|
@@ -1,3 +1,1039 @@
|
|
|
|
|
|
--------[20_09_2019 13:25:28]--------
|
|
|
Random Grid Search
|
|
|
+
|
|
|
+Search 1 of 500
|
|
|
+momentum0.96, features=[96, 192, 192], dropout_rate=0.6
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.03
|
|
|
+
|
|
|
+[13:26:39] INIT Loss(val): 0.141007 Accuarcy: 0.117381
|
|
|
+[13:29:14] Epoch 2: Loss(train): 0.088968 Loss(val): 0.087040
|
|
|
+[13:30:22] Epoch 4: Loss(train): 0.078608 Loss(val): 0.076951
|
|
|
+[13:31:29] Epoch 6: Loss(train): 0.076482 Loss(val): 0.074798
|
|
|
+[13:32:37] Epoch 8: Loss(train): 0.074540 Loss(val): 0.072936
|
|
|
+[13:33:44] Epoch 10: Loss(train): 0.073011 Loss(val): 0.071681
|
|
|
+[13:34:52] Epoch 12: Loss(train): 0.071422 Loss(val): 0.070381
|
|
|
+[13:36:01] Epoch 14: Loss(train): 0.070299 Loss(val): 0.069362
|
|
|
+[13:37:10] Epoch 16: Loss(train): 0.069983 Loss(val): 0.069102
|
|
|
+[13:38:18] Epoch 18: Loss(train): 0.069733 Loss(val): 0.068830
|
|
|
+[13:39:27] Epoch 20: Loss(train): 0.068419 Loss(val): 0.067956
|
|
|
+[13:40:35] Epoch 22: Loss(train): 0.068390 Loss(val): 0.067870
|
|
|
+[13:41:44] Epoch 24: Loss(train): 0.068358 Loss(val): 0.067915
|
|
|
+[13:42:53] Epoch 26: Loss(train): 0.068200 Loss(val): 0.067803
|
|
|
+[13:44:01] Epoch 28: Loss(train): 0.067958 Loss(val): 0.067655
|
|
|
+[13:45:10] Epoch 30: Loss(train): 0.067752 Loss(val): 0.067437
|
|
|
+[13:46:18] Epoch 32: Loss(train): 0.067372 Loss(val): 0.067225
|
|
|
+[13:47:28] Epoch 34: Loss(train): 0.067107 Loss(val): 0.067024
|
|
|
+[13:48:38] Epoch 36: Loss(train): 0.066756 Loss(val): 0.066762
|
|
|
+[13:49:50] Epoch 38: Loss(train): 0.066352 Loss(val): 0.066501
|
|
|
+[13:50:59] Epoch 40: Loss(train): 0.066226 Loss(val): 0.066400
|
|
|
+[13:51:06] FINAL(40) Loss(val): 0.066400 Accuarcy: 0.621310
|
|
|
+
|
|
|
+Search 2 of 500
|
|
|
+momentum0.99, features=[32, 32, 32], dropout_rate=0.4
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
|
|
|
+
|
|
|
+[13:51:25] INIT Loss(val): 0.116734 Accuarcy: 0.086190
|
|
|
+[13:52:24] Epoch 2: Loss(train): 0.111209 Loss(val): 0.112811
|
|
|
+[13:52:52] Epoch 4: Loss(train): 0.070398 Loss(val): 0.072423
|
|
|
+[13:53:22] Epoch 6: Loss(train): 0.068424 Loss(val): 0.070707
|
|
|
+[13:53:52] Epoch 8: Loss(train): 0.067158 Loss(val): 0.069694
|
|
|
+[13:54:21] Epoch 10: Loss(train): 0.066686 Loss(val): 0.069351
|
|
|
+[13:54:50] Epoch 12: Loss(train): 0.066295 Loss(val): 0.069087
|
|
|
+[13:55:20] Epoch 14: Loss(train): 0.066166 Loss(val): 0.069011
|
|
|
+[13:55:49] Epoch 16: Loss(train): 0.066101 Loss(val): 0.068977
|
|
|
+[13:56:18] Epoch 18: Loss(train): 0.066013 Loss(val): 0.068943
|
|
|
+[13:56:46] Epoch 20: Loss(train): 0.065961 Loss(val): 0.068933
|
|
|
+[13:57:14] Epoch 22: Loss(train): 0.065942 Loss(val): 0.068932
|
|
|
+Early stopping with Loss(train) 0.065942 at epoch 22 (Accuracy: 0.091786)
|
|
|
+
|
|
|
+Search 3 of 500
|
|
|
+momentum0.98, features=[32, 64, 128], dropout_rate=0.3
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.3
|
|
|
+
|
|
|
+[13:57:28] INIT Loss(val): 0.158934 Accuarcy: 0.094031
|
|
|
+[13:59:04] Epoch 2: Loss(train): 0.079493 Loss(val): 0.079803
|
|
|
+[14:00:10] Epoch 4: Loss(train): 0.071139 Loss(val): 0.070190
|
|
|
+[14:01:15] Epoch 6: Loss(train): 0.057562 Loss(val): 0.059708
|
|
|
+[14:02:20] Epoch 8: Loss(train): 0.042016 Loss(val): 0.042341
|
|
|
+[14:03:25] Epoch 10: Loss(train): 0.035010 Loss(val): 0.034012
|
|
|
+[14:04:32] Epoch 12: Loss(train): 0.031262 Loss(val): 0.030622
|
|
|
+[14:05:40] Epoch 14: Loss(train): 0.031100 Loss(val): 0.031548
|
|
|
+[14:06:43] Epoch 16: Loss(train): 0.027940 Loss(val): 0.026886
|
|
|
+[14:07:49] Epoch 18: Loss(train): 0.026650 Loss(val): 0.026341
|
|
|
+[14:08:55] Epoch 20: Loss(train): 0.025911 Loss(val): 0.024959
|
|
|
+[14:09:59] Epoch 22: Loss(train): 0.023871 Loss(val): 0.022819
|
|
|
+[14:11:04] Epoch 24: Loss(train): 0.022636 Loss(val): 0.021778
|
|
|
+[14:12:08] Epoch 26: Loss(train): 0.020553 Loss(val): 0.020178
|
|
|
+[14:13:13] Epoch 28: Loss(train): 0.020170 Loss(val): 0.019662
|
|
|
+[14:14:21] Epoch 30: Loss(train): 0.020618 Loss(val): 0.019873
|
|
|
+[14:15:29] Epoch 32: Loss(train): 0.021250 Loss(val): 0.020526
|
|
|
+[14:16:36] Epoch 34: Loss(train): 0.020209 Loss(val): 0.019461
|
|
|
+[14:17:50] Epoch 36: Loss(train): 0.019272 Loss(val): 0.018871
|
|
|
+[14:19:04] Epoch 38: Loss(train): 0.019579 Loss(val): 0.019146
|
|
|
+[14:20:18] Epoch 40: Loss(train): 0.020248 Loss(val): 0.019587
|
|
|
+[14:20:28] FINAL(40) Loss(val): 0.019587 Accuarcy: 0.607517
|
|
|
+
|
|
|
+Search 4 of 500
|
|
|
+momentum0.98, features=[32, 32, 32], dropout_rate=0.3
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
|
|
|
+
|
|
|
+[14:20:51] INIT Loss(val): 0.128640 Accuarcy: 0.094643
|
|
|
+[14:21:39] Epoch 2: Loss(train): 0.056761 Loss(val): 0.056647
|
|
|
+[14:22:08] Epoch 4: Loss(train): 0.050836 Loss(val): 0.050852
|
|
|
+[14:22:37] Epoch 6: Loss(train): 0.048547 Loss(val): 0.048590
|
|
|
+[14:23:06] Epoch 8: Loss(train): 0.047363 Loss(val): 0.047409
|
|
|
+[14:23:35] Epoch 10: Loss(train): 0.046506 Loss(val): 0.046528
|
|
|
+[14:24:05] Epoch 12: Loss(train): 0.046048 Loss(val): 0.046113
|
|
|
+[14:24:34] Epoch 14: Loss(train): 0.045531 Loss(val): 0.045707
|
|
|
+[14:25:05] Epoch 16: Loss(train): 0.045208 Loss(val): 0.045390
|
|
|
+[14:25:35] Epoch 18: Loss(train): 0.044927 Loss(val): 0.045131
|
|
|
+[14:26:06] Epoch 20: Loss(train): 0.044599 Loss(val): 0.044836
|
|
|
+[14:26:36] Epoch 22: Loss(train): 0.044361 Loss(val): 0.044653
|
|
|
+[14:27:05] Epoch 24: Loss(train): 0.044173 Loss(val): 0.044473
|
|
|
+[14:27:36] Epoch 26: Loss(train): 0.043907 Loss(val): 0.044196
|
|
|
+[14:28:06] Epoch 28: Loss(train): 0.043688 Loss(val): 0.044030
|
|
|
+[14:28:36] Epoch 30: Loss(train): 0.043458 Loss(val): 0.043854
|
|
|
+[14:29:07] Epoch 32: Loss(train): 0.043282 Loss(val): 0.043654
|
|
|
+[14:29:37] Epoch 34: Loss(train): 0.043138 Loss(val): 0.043506
|
|
|
+[14:30:07] Epoch 36: Loss(train): 0.042960 Loss(val): 0.043359
|
|
|
+[14:30:38] Epoch 38: Loss(train): 0.042856 Loss(val): 0.043255
|
|
|
+Early stopping with Loss(train) 0.044059 at epoch 38 (Accuracy: 0.575901)
|
|
|
+
|
|
|
+Search 5 of 500
|
|
|
+momentum0.94, features=[64, 64, 64], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
|
|
|
+
|
|
|
+[14:30:53] INIT Loss(val): 0.119816 Accuarcy: 0.091463
|
|
|
+[14:34:37] Epoch 2: Loss(train): 0.068172 Loss(val): 0.066521
|
|
|
+[14:38:47] Epoch 4: Loss(train): 0.061371 Loss(val): 0.060421
|
|
|
+[14:44:35] Epoch 6: Loss(train): 0.058998 Loss(val): 0.058359
|
|
|
+[14:50:21] Epoch 8: Loss(train): 0.057713 Loss(val): 0.057312
|
|
|
+[14:54:55] Epoch 10: Loss(train): 0.056964 Loss(val): 0.056694
|
|
|
+[14:59:13] Epoch 12: Loss(train): 0.056202 Loss(val): 0.056133
|
|
|
+[15:03:30] Epoch 14: Loss(train): 0.055774 Loss(val): 0.055825
|
|
|
+[15:07:46] Epoch 16: Loss(train): 0.055417 Loss(val): 0.055541
|
|
|
+[15:09:41] Epoch 18: Loss(train): 0.055157 Loss(val): 0.055343
|
|
|
+[15:11:36] Epoch 20: Loss(train): 0.054948 Loss(val): 0.055184
|
|
|
+[15:14:40] Epoch 22: Loss(train): 0.054736 Loss(val): 0.055040
|
|
|
+[15:17:10] Epoch 24: Loss(train): 0.054518 Loss(val): 0.054851
|
|
|
+[15:19:29] Epoch 26: Loss(train): 0.054388 Loss(val): 0.054757
|
|
|
+[15:21:38] Epoch 28: Loss(train): 0.054141 Loss(val): 0.054547
|
|
|
+[15:23:56] Epoch 30: Loss(train): 0.054011 Loss(val): 0.054442
|
|
|
+[15:25:57] Epoch 32: Loss(train): 0.053802 Loss(val): 0.054259
|
|
|
+[15:27:59] Epoch 34: Loss(train): 0.053625 Loss(val): 0.054112
|
|
|
+[15:30:03] Epoch 36: Loss(train): 0.053405 Loss(val): 0.053942
|
|
|
+[15:32:05] Epoch 38: Loss(train): 0.053237 Loss(val): 0.053814
|
|
|
+Early stopping with Loss(train) 0.054171 at epoch 38 (Accuracy: 0.534439)
|
|
|
+
|
|
|
+Search 6 of 500
|
|
|
+momentum0.94, features=[96, 192, 192], dropout_rate=0.3
|
|
|
+kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.1
|
|
|
+
|
|
|
+[15:32:54] INIT Loss(val): 0.138280 Accuarcy: 0.103418
|
|
|
+[15:34:06] Epoch 2: Loss(train): 0.083781 Loss(val): 0.084471
|
|
|
+[15:35:16] Epoch 4: Loss(train): 0.076121 Loss(val): 0.077370
|
|
|
+[15:36:23] Epoch 6: Loss(train): 0.074109 Loss(val): 0.073338
|
|
|
+[15:37:30] Epoch 8: Loss(train): 0.070528 Loss(val): 0.070370
|
|
|
+[15:38:36] Epoch 10: Loss(train): 0.067579 Loss(val): 0.067635
|
|
|
+[15:39:43] Epoch 12: Loss(train): 0.065495 Loss(val): 0.065627
|
|
|
+[15:40:51] Epoch 14: Loss(train): 0.064575 Loss(val): 0.064573
|
|
|
+[15:42:01] Epoch 16: Loss(train): 0.062974 Loss(val): 0.063009
|
|
|
+[15:43:23] Epoch 18: Loss(train): 0.061456 Loss(val): 0.061671
|
|
|
+[15:44:49] Epoch 20: Loss(train): 0.060464 Loss(val): 0.060732
|
|
|
+[15:46:07] Epoch 22: Loss(train): 0.059721 Loss(val): 0.060011
|
|
|
+[15:47:29] Epoch 24: Loss(train): 0.058930 Loss(val): 0.059211
|
|
|
+[15:48:42] Epoch 26: Loss(train): 0.058132 Loss(val): 0.058528
|
|
|
+[15:50:06] Epoch 28: Loss(train): 0.057695 Loss(val): 0.058175
|
|
|
+[15:51:18] Epoch 30: Loss(train): 0.056704 Loss(val): 0.057436
|
|
|
+[15:52:28] Epoch 32: Loss(train): 0.056475 Loss(val): 0.057144
|
|
|
+[15:53:48] Epoch 34: Loss(train): 0.055826 Loss(val): 0.056582
|
|
|
+Early stopping with Loss(train) 0.056777 at epoch 35 (Accuracy: 0.632602)
|
|
|
+
|
|
|
+Search 7 of 500
|
|
|
+momentum0.9, features=[32, 64, 128], dropout_rate=0.4
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
|
|
|
+
|
|
|
+[15:54:46] INIT Loss(val): 0.146946 Accuarcy: 0.092534
|
|
|
+[15:59:34] Epoch 2: Loss(train): 0.080755 Loss(val): 0.080996
|
|
|
+[16:04:53] Epoch 4: Loss(train): 0.072572 Loss(val): 0.072945
|
|
|
+[16:10:04] Epoch 6: Loss(train): 0.069757 Loss(val): 0.070359
|
|
|
+[16:16:05] Epoch 8: Loss(train): 0.068311 Loss(val): 0.069053
|
|
|
+[16:18:27] Epoch 10: Loss(train): 0.067540 Loss(val): 0.068310
|
|
|
+[16:20:27] Epoch 12: Loss(train): 0.066874 Loss(val): 0.067751
|
|
|
+[16:21:51] Epoch 14: Loss(train): 0.066258 Loss(val): 0.067226
|
|
|
+[16:23:24] Epoch 16: Loss(train): 0.065859 Loss(val): 0.066875
|
|
|
+[16:24:42] Epoch 18: Loss(train): 0.065511 Loss(val): 0.066519
|
|
|
+[16:26:03] Epoch 20: Loss(train): 0.065213 Loss(val): 0.066262
|
|
|
+[16:27:34] Epoch 22: Loss(train): 0.064957 Loss(val): 0.066055
|
|
|
+[16:28:56] Epoch 24: Loss(train): 0.064687 Loss(val): 0.065852
|
|
|
+[16:30:15] Epoch 26: Loss(train): 0.064495 Loss(val): 0.065710
|
|
|
+[16:31:42] Epoch 28: Loss(train): 0.064351 Loss(val): 0.065567
|
|
|
+[16:33:03] Epoch 30: Loss(train): 0.064181 Loss(val): 0.065445
|
|
|
+Early stopping with Loss(train) 0.067298 at epoch 31 (Accuracy: 0.446395)
|
|
|
+
|
|
|
+Search 8 of 500
|
|
|
+momentum0.96, features=[32, 32, 32], dropout_rate=0.6
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
|
|
|
+
|
|
|
+[16:34:07] INIT Loss(val): 0.114290 Accuarcy: 0.088316
|
|
|
+[16:34:46] Epoch 2: Loss(train): 0.064952 Loss(val): 0.064766
|
|
|
+[16:35:23] Epoch 4: Loss(train): 0.055647 Loss(val): 0.055572
|
|
|
+[16:36:02] Epoch 6: Loss(train): 0.052844 Loss(val): 0.052606
|
|
|
+[16:36:38] Epoch 8: Loss(train): 0.050985 Loss(val): 0.050845
|
|
|
+[16:37:12] Epoch 10: Loss(train): 0.049845 Loss(val): 0.049633
|
|
|
+[16:37:47] Epoch 12: Loss(train): 0.049152 Loss(val): 0.048910
|
|
|
+[16:38:22] Epoch 14: Loss(train): 0.048669 Loss(val): 0.048351
|
|
|
+[16:38:57] Epoch 16: Loss(train): 0.048184 Loss(val): 0.047886
|
|
|
+[16:39:31] Epoch 18: Loss(train): 0.047724 Loss(val): 0.047523
|
|
|
+[16:40:06] Epoch 20: Loss(train): 0.047366 Loss(val): 0.047177
|
|
|
+[16:40:42] Epoch 22: Loss(train): 0.047168 Loss(val): 0.046973
|
|
|
+[16:41:17] Epoch 24: Loss(train): 0.046858 Loss(val): 0.046676
|
|
|
+[16:41:52] Epoch 26: Loss(train): 0.046654 Loss(val): 0.046519
|
|
|
+[16:42:27] Epoch 28: Loss(train): 0.046444 Loss(val): 0.046329
|
|
|
+[16:43:03] Epoch 30: Loss(train): 0.046292 Loss(val): 0.046197
|
|
|
+[16:43:39] Epoch 32: Loss(train): 0.046148 Loss(val): 0.046083
|
|
|
+[16:44:14] Epoch 34: Loss(train): 0.045966 Loss(val): 0.045960
|
|
|
+[16:44:50] Epoch 36: Loss(train): 0.045872 Loss(val): 0.045834
|
|
|
+[16:45:40] Epoch 38: Loss(train): 0.045775 Loss(val): 0.045743
|
|
|
+Early stopping with Loss(train) 0.048965 at epoch 38 (Accuracy: 0.502738)
|
|
|
+
|
|
|
+Search 9 of 500
|
|
|
+momentum0.9, features=[32, 64, 128], dropout_rate=0.6
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.3
|
|
|
+
|
|
|
+[16:46:09] INIT Loss(val): 0.128704 Accuarcy: 0.095255
|
|
|
+[16:47:37] Epoch 2: Loss(train): 0.068261 Loss(val): 0.066425
|
|
|
+[16:48:59] Epoch 4: Loss(train): 0.059768 Loss(val): 0.058380
|
|
|
+[16:49:56] Epoch 6: Loss(train): 0.056013 Loss(val): 0.054921
|
|
|
+[16:50:56] Epoch 8: Loss(train): 0.052184 Loss(val): 0.051936
|
|
|
+[16:52:12] Epoch 10: Loss(train): 0.050930 Loss(val): 0.050823
|
|
|
+[16:53:14] Epoch 12: Loss(train): 0.050832 Loss(val): 0.051081
|
|
|
+[16:54:05] Epoch 14: Loss(train): 0.047966 Loss(val): 0.048353
|
|
|
+[16:54:58] Epoch 16: Loss(train): 0.046510 Loss(val): 0.046471
|
|
|
+[16:55:53] Epoch 18: Loss(train): 0.045391 Loss(val): 0.045162
|
|
|
+Early stopping with Loss(train) 0.047088 at epoch 19 (Accuracy: 0.514779)
|
|
|
+
|
|
|
+Search 10 of 500
|
|
|
+momentum0.99, features=[32, 32, 32], dropout_rate=0.6
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
|
|
|
+
|
|
|
+[16:56:41] INIT Loss(val): 0.155156 Accuarcy: 0.107092
|
|
|
+[16:57:23] Epoch 2: Loss(train): 0.082692 Loss(val): 0.082872
|
|
|
+[16:58:03] Epoch 4: Loss(train): 0.070038 Loss(val): 0.068951
|
|
|
+[16:58:43] Epoch 6: Loss(train): 0.052024 Loss(val): 0.051050
|
|
|
+[16:59:23] Epoch 8: Loss(train): 0.042558 Loss(val): 0.042033
|
|
|
+[17:00:01] Epoch 10: Loss(train): 0.033804 Loss(val): 0.032005
|
|
|
+[17:00:41] Epoch 12: Loss(train): 0.028679 Loss(val): 0.028131
|
|
|
+[17:01:25] Epoch 14: Loss(train): 0.026270 Loss(val): 0.025863
|
|
|
+[17:02:07] Epoch 16: Loss(train): 0.025516 Loss(val): 0.024859
|
|
|
+[17:02:46] Epoch 18: Loss(train): 0.024369 Loss(val): 0.024071
|
|
|
+[17:03:26] Epoch 20: Loss(train): 0.022684 Loss(val): 0.022117
|
|
|
+[17:04:06] Epoch 22: Loss(train): 0.022049 Loss(val): 0.020969
|
|
|
+[17:04:45] Epoch 24: Loss(train): 0.021334 Loss(val): 0.020421
|
|
|
+[17:05:26] Epoch 26: Loss(train): 0.021068 Loss(val): 0.020358
|
|
|
+[17:06:06] Epoch 28: Loss(train): 0.021064 Loss(val): 0.020323
|
|
|
+[17:06:45] Epoch 30: Loss(train): 0.021924 Loss(val): 0.020800
|
|
|
+[17:07:25] Epoch 32: Loss(train): 0.022128 Loss(val): 0.021133
|
|
|
+[17:08:05] Epoch 34: Loss(train): 0.021443 Loss(val): 0.020385
|
|
|
+[17:08:44] Epoch 36: Loss(train): 0.023132 Loss(val): 0.021738
|
|
|
+[17:09:23] Epoch 38: Loss(train): 0.024656 Loss(val): 0.023247
|
|
|
+[17:10:02] Epoch 40: Loss(train): 0.022748 Loss(val): 0.021955
|
|
|
+[17:10:07] FINAL(40) Loss(val): 0.021955 Accuarcy: 0.579932
|
|
|
+
|
|
|
+Search 11 of 500
|
|
|
+momentum0.99, features=[32, 64, 128], dropout_rate=0.3
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
|
|
|
+
|
|
|
+[17:10:22] INIT Loss(val): 0.131512 Accuarcy: 0.094524
|
|
|
+[17:11:17] Epoch 2: Loss(train): 0.067090 Loss(val): 0.065792
|
|
|
+[17:12:12] Epoch 4: Loss(train): 0.061073 Loss(val): 0.059899
|
|
|
+[17:13:05] Epoch 6: Loss(train): 0.059854 Loss(val): 0.059079
|
|
|
+[17:14:02] Epoch 8: Loss(train): 0.059035 Loss(val): 0.058605
|
|
|
+[17:14:57] Epoch 10: Loss(train): 0.058039 Loss(val): 0.057734
|
|
|
+[17:15:54] Epoch 12: Loss(train): 0.056114 Loss(val): 0.055818
|
|
|
+[17:17:03] Epoch 14: Loss(train): 0.055465 Loss(val): 0.055276
|
|
|
+[17:18:32] Epoch 16: Loss(train): 0.055368 Loss(val): 0.055433
|
|
|
+[17:19:59] Epoch 18: Loss(train): 0.055454 Loss(val): 0.055520
|
|
|
+[17:21:32] Epoch 20: Loss(train): 0.055490 Loss(val): 0.055287
|
|
|
+[17:22:53] Epoch 22: Loss(train): 0.054614 Loss(val): 0.054396
|
|
|
+[17:23:49] Epoch 24: Loss(train): 0.053453 Loss(val): 0.053415
|
|
|
+[17:25:15] Epoch 26: Loss(train): 0.053183 Loss(val): 0.053106
|
|
|
+[17:26:20] Epoch 28: Loss(train): 0.053469 Loss(val): 0.053248
|
|
|
+[17:27:23] Epoch 30: Loss(train): 0.054454 Loss(val): 0.053836
|
|
|
+[17:28:23] Epoch 32: Loss(train): 0.054597 Loss(val): 0.053841
|
|
|
+[17:29:24] Epoch 34: Loss(train): 0.053575 Loss(val): 0.053139
|
|
|
+[17:30:23] Epoch 36: Loss(train): 0.052531 Loss(val): 0.052516
|
|
|
+[17:31:27] Epoch 38: Loss(train): 0.052137 Loss(val): 0.052324
|
|
|
+[17:32:28] Epoch 40: Loss(train): 0.051984 Loss(val): 0.052194
|
|
|
+[17:32:35] FINAL(40) Loss(val): 0.052194 Accuarcy: 0.657959
|
|
|
+
|
|
|
+Search 12 of 500
|
|
|
+momentum0.98, features=[64, 64, 64], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
|
|
|
+
|
|
|
+[17:32:56] INIT Loss(val): 0.152510 Accuarcy: 0.094932
|
|
|
+[17:34:22] Epoch 2: Loss(train): 0.076679 Loss(val): 0.078237
|
|
|
+[17:35:44] Epoch 4: Loss(train): 0.059022 Loss(val): 0.060126
|
|
|
+[17:40:56] Epoch 6: Loss(train): 0.050557 Loss(val): 0.051844
|
|
|
+[17:49:29] Epoch 8: Loss(train): 0.045205 Loss(val): 0.045557
|
|
|
+[18:00:08] Epoch 10: Loss(train): 0.040994 Loss(val): 0.041337
|
|
|
+[18:08:11] Epoch 12: Loss(train): 0.038653 Loss(val): 0.038964
|
|
|
+[18:15:40] Epoch 14: Loss(train): 0.036438 Loss(val): 0.036957
|
|
|
+[18:25:46] Epoch 16: Loss(train): 0.035700 Loss(val): 0.035639
|
|
|
+[18:35:47] Epoch 18: Loss(train): 0.034637 Loss(val): 0.034805
|
|
|
+[18:43:48] Epoch 20: Loss(train): 0.031340 Loss(val): 0.031079
|
|
|
+[18:51:14] Epoch 22: Loss(train): 0.029792 Loss(val): 0.029546
|
|
|
+[19:02:50] Epoch 24: Loss(train): 0.028174 Loss(val): 0.027946
|
|
|
+[19:11:45] Epoch 26: Loss(train): 0.027586 Loss(val): 0.027259
|
|
|
+[19:19:33] Epoch 28: Loss(train): 0.027456 Loss(val): 0.027579
|
|
|
+[19:28:45] Epoch 30: Loss(train): 0.027956 Loss(val): 0.027891
|
|
|
+[19:40:09] Epoch 32: Loss(train): 0.028770 Loss(val): 0.028286
|
|
|
+Early stopping with Loss(train) 0.028975 at epoch 33 (Accuracy: 0.584439)
|
|
|
+
|
|
|
+Search 13 of 500
|
|
|
+momentum0.99, features=[64, 64, 64], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
|
|
|
+
|
|
|
+[19:46:57] INIT Loss(val): 0.145452 Accuarcy: 0.113588
|
|
|
+[19:50:44] Epoch 2: Loss(train): 0.089347 Loss(val): 0.088077
|
|
|
+[19:54:42] Epoch 4: Loss(train): 0.063581 Loss(val): 0.064125
|
|
|
+[19:59:21] Epoch 6: Loss(train): 0.061616 Loss(val): 0.062470
|
|
|
+[20:06:13] Epoch 8: Loss(train): 0.061005 Loss(val): 0.061986
|
|
|
+[20:11:36] Epoch 10: Loss(train): 0.060453 Loss(val): 0.061392
|
|
|
+[20:16:11] Epoch 12: Loss(train): 0.059992 Loss(val): 0.060942
|
|
|
+[20:20:27] Epoch 14: Loss(train): 0.059627 Loss(val): 0.060763
|
|
|
+[20:24:29] Epoch 16: Loss(train): 0.059573 Loss(val): 0.060785
|
|
|
+[20:28:31] Epoch 18: Loss(train): 0.059532 Loss(val): 0.060666
|
|
|
+[20:34:27] Epoch 20: Loss(train): 0.058798 Loss(val): 0.059861
|
|
|
+[20:41:03] Epoch 22: Loss(train): 0.058062 Loss(val): 0.059021
|
|
|
+[20:46:14] Epoch 24: Loss(train): 0.057693 Loss(val): 0.058506
|
|
|
+[20:50:45] Epoch 26: Loss(train): 0.057584 Loss(val): 0.058362
|
|
|
+[20:54:59] Epoch 28: Loss(train): 0.057410 Loss(val): 0.058215
|
|
|
+[20:59:00] Epoch 30: Loss(train): 0.057174 Loss(val): 0.057987
|
|
|
+[21:03:40] Epoch 32: Loss(train): 0.057070 Loss(val): 0.057808
|
|
|
+[21:10:36] Epoch 34: Loss(train): 0.057235 Loss(val): 0.057774
|
|
|
+[21:16:08] Epoch 36: Loss(train): 0.057474 Loss(val): 0.057816
|
|
|
+[21:21:06] Epoch 38: Loss(train): 0.057530 Loss(val): 0.057807
|
|
|
+[21:25:37] Epoch 40: Loss(train): 0.057105 Loss(val): 0.057592
|
|
|
+[21:26:04] FINAL(40) Loss(val): 0.057592 Accuarcy: 0.591735
|
|
|
+
|
|
|
+Search 14 of 500
|
|
|
+momentum0.9, features=[32, 32, 32], dropout_rate=0.6
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.01
|
|
|
+
|
|
|
+[21:26:59] INIT Loss(val): 0.122847 Accuarcy: 0.101803
|
|
|
+[21:29:56] Epoch 2: Loss(train): 0.064045 Loss(val): 0.063516
|
|
|
+[21:33:02] Epoch 4: Loss(train): 0.056780 Loss(val): 0.055908
|
|
|
+[21:36:53] Epoch 6: Loss(train): 0.054376 Loss(val): 0.053519
|
|
|
+[21:42:25] Epoch 8: Loss(train): 0.052633 Loss(val): 0.051863
|
|
|
+[21:47:10] Epoch 10: Loss(train): 0.051527 Loss(val): 0.050836
|
|
|
+[21:51:13] Epoch 12: Loss(train): 0.050602 Loss(val): 0.049957
|
|
|
+[21:54:56] Epoch 14: Loss(train): 0.050027 Loss(val): 0.049464
|
|
|
+[21:58:20] Epoch 16: Loss(train): 0.049429 Loss(val): 0.048945
|
|
|
+[22:01:33] Epoch 18: Loss(train): 0.048902 Loss(val): 0.048480
|
|
|
+[22:04:43] Epoch 20: Loss(train): 0.048485 Loss(val): 0.048132
|
|
|
+[22:07:56] Epoch 22: Loss(train): 0.048165 Loss(val): 0.047822
|
|
|
+[22:11:08] Epoch 24: Loss(train): 0.047914 Loss(val): 0.047628
|
|
|
+[22:14:30] Epoch 26: Loss(train): 0.047709 Loss(val): 0.047426
|
|
|
+[22:17:49] Epoch 28: Loss(train): 0.047584 Loss(val): 0.047305
|
|
|
+[22:21:12] Epoch 30: Loss(train): 0.047354 Loss(val): 0.047143
|
|
|
+Early stopping with Loss(train) 0.050260 at epoch 31 (Accuracy: 0.503571)
|
|
|
+
|
|
|
+Search 15 of 500
|
|
|
+momentum0.98, features=[32, 64, 128], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
|
|
|
+
|
|
|
+[22:23:39] INIT Loss(val): 0.218097 Accuarcy: 0.093946
|
|
|
+[22:31:36] Epoch 2: Loss(train): 0.072229 Loss(val): 0.072008
|
|
|
+[22:42:38] Epoch 4: Loss(train): 0.066523 Loss(val): 0.066956
|
|
|
+[22:51:18] Epoch 6: Loss(train): 0.064689 Loss(val): 0.065551
|
|
|
+[22:59:03] Epoch 8: Loss(train): 0.063820 Loss(val): 0.064851
|
|
|
+[23:08:26] Epoch 10: Loss(train): 0.063226 Loss(val): 0.064352
|
|
|
+[23:17:54] Epoch 12: Loss(train): 0.062768 Loss(val): 0.063999
|
|
|
+[23:26:17] Epoch 14: Loss(train): 0.062558 Loss(val): 0.063801
|
|
|
+[23:34:03] Epoch 16: Loss(train): 0.062267 Loss(val): 0.063589
|
|
|
+[23:44:32] Epoch 18: Loss(train): 0.061969 Loss(val): 0.063301
|
|
|
+[23:53:31] Epoch 20: Loss(train): 0.061649 Loss(val): 0.062996
|
|
|
+[00:01:31] Epoch 22: Loss(train): 0.061327 Loss(val): 0.062696
|
|
|
+[00:11:05] Epoch 24: Loss(train): 0.060975 Loss(val): 0.062371
|
|
|
+[00:20:49] Epoch 26: Loss(train): 0.060806 Loss(val): 0.062130
|
|
|
+[00:29:09] Epoch 28: Loss(train): 0.060544 Loss(val): 0.061854
|
|
|
+[00:37:04] Epoch 30: Loss(train): 0.060328 Loss(val): 0.061611
|
|
|
+[00:48:06] Epoch 32: Loss(train): 0.060126 Loss(val): 0.061430
|
|
|
+[00:57:20] Epoch 34: Loss(train): 0.059966 Loss(val): 0.061301
|
|
|
+[01:05:24] Epoch 36: Loss(train): 0.059804 Loss(val): 0.061190
|
|
|
+[01:16:04] Epoch 38: Loss(train): 0.059661 Loss(val): 0.061111
|
|
|
+[01:25:57] Epoch 40: Loss(train): 0.059557 Loss(val): 0.061046
|
|
|
+[01:27:07] FINAL(40) Loss(val): 0.061046 Accuarcy: 0.573963
|
|
|
+
|
|
|
+Search 16 of 500
|
|
|
+momentum0.94, features=[64, 64, 64], dropout_rate=0.8
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
|
|
|
+
|
|
|
+[01:29:00] INIT Loss(val): 0.151834 Accuarcy: 0.108827
|
|
|
+[01:33:32] Epoch 2: Loss(train): 0.110386 Loss(val): 0.113633
|
|
|
+[01:38:13] Epoch 4: Loss(train): 0.106996 Loss(val): 0.110476
|
|
|
+[01:44:49] Epoch 6: Loss(train): 0.100696 Loss(val): 0.104549
|
|
|
+[01:52:04] Epoch 8: Loss(train): 0.094171 Loss(val): 0.098184
|
|
|
+[01:58:26] Epoch 10: Loss(train): 0.089803 Loss(val): 0.093782
|
|
|
+[02:03:44] Epoch 12: Loss(train): 0.087074 Loss(val): 0.091006
|
|
|
+[02:08:33] Epoch 14: Loss(train): 0.085113 Loss(val): 0.088931
|
|
|
+[02:13:20] Epoch 16: Loss(train): 0.083500 Loss(val): 0.087246
|
|
|
+[02:21:19] Epoch 18: Loss(train): 0.081911 Loss(val): 0.085563
|
|
|
+[02:28:13] Epoch 20: Loss(train): 0.080556 Loss(val): 0.084120
|
|
|
+[02:34:03] Epoch 22: Loss(train): 0.079362 Loss(val): 0.082816
|
|
|
+[02:39:08] Epoch 24: Loss(train): 0.078311 Loss(val): 0.081671
|
|
|
+[02:43:58] Epoch 26: Loss(train): 0.077400 Loss(val): 0.080661
|
|
|
+[02:49:40] Epoch 28: Loss(train): 0.076570 Loss(val): 0.079715
|
|
|
+[02:57:52] Epoch 30: Loss(train): 0.075883 Loss(val): 0.078951
|
|
|
+[03:04:07] Epoch 32: Loss(train): 0.075348 Loss(val): 0.078346
|
|
|
+[03:09:39] Epoch 34: Loss(train): 0.074812 Loss(val): 0.077732
|
|
|
+[03:14:37] Epoch 36: Loss(train): 0.074405 Loss(val): 0.077256
|
|
|
+[03:19:32] Epoch 38: Loss(train): 0.074032 Loss(val): 0.076837
|
|
|
+[03:27:14] Epoch 40: Loss(train): 0.073680 Loss(val): 0.076428
|
|
|
+[03:28:09] FINAL(40) Loss(val): 0.076428 Accuarcy: 0.274915
|
|
|
+
|
|
|
+Search 17 of 500
|
|
|
+momentum0.9, features=[64, 64, 64], dropout_rate=0.4
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.03
|
|
|
+
|
|
|
+[03:29:53] INIT Loss(val): 0.131165 Accuarcy: 0.093435
|
|
|
+[03:41:05] Epoch 2: Loss(train): 0.068231 Loss(val): 0.066406
|
|
|
+[03:51:07] Epoch 4: Loss(train): 0.064709 Loss(val): 0.062722
|
|
|
+[04:06:03] Epoch 6: Loss(train): 0.062242 Loss(val): 0.060431
|
|
|
+[04:17:27] Epoch 8: Loss(train): 0.060373 Loss(val): 0.058780
|
|
|
+[04:28:16] Epoch 10: Loss(train): 0.059085 Loss(val): 0.057533
|
|
|
+[04:43:05] Epoch 12: Loss(train): 0.058318 Loss(val): 0.056778
|
|
|
+[04:53:42] Epoch 14: Loss(train): 0.057390 Loss(val): 0.055989
|
|
|
+[05:06:46] Epoch 16: Loss(train): 0.056481 Loss(val): 0.055205
|
|
|
+[05:19:57] Epoch 18: Loss(train): 0.055879 Loss(val): 0.054648
|
|
|
+[05:30:13] Epoch 20: Loss(train): 0.055364 Loss(val): 0.054170
|
|
|
+[05:45:34] Epoch 22: Loss(train): 0.054641 Loss(val): 0.053574
|
|
|
+[05:56:57] Epoch 24: Loss(train): 0.054031 Loss(val): 0.053062
|
|
|
+[06:07:12] Epoch 26: Loss(train): 0.053433 Loss(val): 0.052634
|
|
|
+Early stopping with Loss(train) 0.054989 at epoch 27 (Accuracy: 0.557653)
|
|
|
+
|
|
|
+Search 18 of 500
|
|
|
+momentum0.92, features=[32, 32, 32], dropout_rate=0.3
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
|
|
|
+
|
|
|
+[06:15:45] INIT Loss(val): 0.118689 Accuarcy: 0.101990
|
|
|
+[06:19:38] Epoch 2: Loss(train): 0.068195 Loss(val): 0.069483
|
|
|
+[06:23:52] Epoch 4: Loss(train): 0.062983 Loss(val): 0.063813
|
|
|
+[06:28:34] Epoch 6: Loss(train): 0.060712 Loss(val): 0.061474
|
|
|
+[06:34:45] Epoch 8: Loss(train): 0.059224 Loss(val): 0.060002
|
|
|
+[06:39:41] Epoch 10: Loss(train): 0.058208 Loss(val): 0.059001
|
|
|
+[06:44:28] Epoch 12: Loss(train): 0.057323 Loss(val): 0.058152
|
|
|
+[06:48:47] Epoch 14: Loss(train): 0.056700 Loss(val): 0.057535
|
|
|
+[06:52:56] Epoch 16: Loss(train): 0.056110 Loss(val): 0.056953
|
|
|
+[06:57:00] Epoch 18: Loss(train): 0.055600 Loss(val): 0.056486
|
|
|
+[07:01:11] Epoch 20: Loss(train): 0.055162 Loss(val): 0.056064
|
|
|
+[07:07:25] Epoch 22: Loss(train): 0.054831 Loss(val): 0.055762
|
|
|
+[07:12:41] Epoch 24: Loss(train): 0.054532 Loss(val): 0.055485
|
|
|
+[07:17:21] Epoch 26: Loss(train): 0.054293 Loss(val): 0.055247
|
|
|
+[07:21:44] Epoch 28: Loss(train): 0.054086 Loss(val): 0.055038
|
|
|
+[07:25:57] Epoch 30: Loss(train): 0.053895 Loss(val): 0.054867
|
|
|
+[07:30:12] Epoch 32: Loss(train): 0.053734 Loss(val): 0.054717
|
|
|
+[07:35:30] Epoch 34: Loss(train): 0.053598 Loss(val): 0.054584
|
|
|
+[07:41:27] Epoch 36: Loss(train): 0.053484 Loss(val): 0.054487
|
|
|
+[07:46:25] Epoch 38: Loss(train): 0.053388 Loss(val): 0.054393
|
|
|
+[07:50:59] Epoch 40: Loss(train): 0.053292 Loss(val): 0.054313
|
|
|
+[07:51:26] FINAL(40) Loss(val): 0.054313 Accuarcy: 0.432704
|
|
|
+
|
|
|
+Search 19 of 500
|
|
|
+momentum0.9, features=[96, 192, 192], dropout_rate=0.4
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
|
|
|
+
|
|
|
+[07:52:19] INIT Loss(val): 0.174489 Accuarcy: 0.104456
|
|
|
+[08:05:37] Epoch 2: Loss(train): 0.102096 Loss(val): 0.102915
|
|
|
+[08:21:51] Epoch 4: Loss(train): 0.066749 Loss(val): 0.065971
|
|
|
+[08:35:13] Epoch 6: Loss(train): 0.055856 Loss(val): 0.055964
|
|
|
+[08:52:20] Epoch 8: Loss(train): 0.047794 Loss(val): 0.047813
|
|
|
+[09:05:42] Epoch 10: Loss(train): 0.041983 Loss(val): 0.042211
|
|
|
+[09:23:11] Epoch 12: Loss(train): 0.037630 Loss(val): 0.038138
|
|
|
+[09:36:57] Epoch 14: Loss(train): 0.034115 Loss(val): 0.034479
|
|
|
+[09:55:56] Epoch 16: Loss(train): 0.032334 Loss(val): 0.032522
|
|
|
+[10:09:49] Epoch 18: Loss(train): 0.030284 Loss(val): 0.030510
|
|
|
+[10:29:29] Epoch 20: Loss(train): 0.028992 Loss(val): 0.029348
|
|
|
+[10:43:10] Epoch 22: Loss(train): 0.028101 Loss(val): 0.028161
|
|
|
+[11:02:49] Epoch 24: Loss(train): 0.027532 Loss(val): 0.027852
|
|
|
+Early stopping with Loss(train) 0.028088 at epoch 25 (Accuracy: 0.567806)
|
|
|
+
|
|
|
+Search 20 of 500
|
|
|
+momentum0.9, features=[96, 192, 192], dropout_rate=0.6
|
|
|
+kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
|
|
|
+
|
|
|
+[11:12:09] INIT Loss(val): 0.158469 Accuarcy: 0.092806
|
|
|
+[11:25:25] Epoch 2: Loss(train): 0.092062 Loss(val): 0.091566
|
|
|
+[11:38:25] Epoch 4: Loss(train): 0.081868 Loss(val): 0.081678
|
|
|
+[11:49:01] Epoch 6: Loss(train): 0.076118 Loss(val): 0.075529
|
|
|
+[12:04:29] Epoch 8: Loss(train): 0.073110 Loss(val): 0.072846
|
|
|
+[12:16:23] Epoch 10: Loss(train): 0.069156 Loss(val): 0.069085
|
|
|
+[12:30:09] Epoch 12: Loss(train): 0.066856 Loss(val): 0.067039
|
|
|
+[12:44:01] Epoch 14: Loss(train): 0.065261 Loss(val): 0.065455
|
|
|
+[12:54:52] Epoch 16: Loss(train): 0.063509 Loss(val): 0.064036
|
|
|
+[13:10:55] Epoch 18: Loss(train): 0.061315 Loss(val): 0.061605
|
|
|
+[13:22:43] Epoch 20: Loss(train): 0.059638 Loss(val): 0.059675
|
|
|
+[13:36:46] Epoch 22: Loss(train): 0.058390 Loss(val): 0.058582
|
|
|
+[13:50:21] Epoch 24: Loss(train): 0.057187 Loss(val): 0.057440
|
|
|
+[14:01:25] Epoch 26: Loss(train): 0.056083 Loss(val): 0.056261
|
|
|
+[14:12:57] Epoch 28: Loss(train): 0.055120 Loss(val): 0.055430
|
|
|
+[14:25:54] Epoch 30: Loss(train): 0.054959 Loss(val): 0.055094
|
|
|
+[14:40:39] Epoch 32: Loss(train): 0.054236 Loss(val): 0.054509
|
|
|
+[14:52:26] Epoch 34: Loss(train): 0.053323 Loss(val): 0.053676
|
|
|
+[15:04:28] Epoch 36: Loss(train): 0.052686 Loss(val): 0.053072
|
|
|
+[15:18:03] Epoch 38: Loss(train): 0.051935 Loss(val): 0.052419
|
|
|
+[15:29:22] Epoch 40: Loss(train): 0.051245 Loss(val): 0.051794
|
|
|
+[15:30:12] FINAL(40) Loss(val): 0.051794 Accuarcy: 0.634048
|
|
|
+
|
|
|
+Search 21 of 500
|
|
|
+momentum0.99, features=[96, 192, 192], dropout_rate=0.3
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
|
|
|
+
|
|
|
+[15:31:35] INIT Loss(val): 0.245048 Accuarcy: 0.072585
|
|
|
+[15:49:17] Epoch 2: Loss(train): 0.106915 Loss(val): 0.105428
|
|
|
+[16:05:12] Epoch 4: Loss(train): 0.089091 Loss(val): 0.088908
|
|
|
+[16:23:07] Epoch 6: Loss(train): 0.075282 Loss(val): 0.074277
|
|
|
+[16:40:46] Epoch 8: Loss(train): 0.062850 Loss(val): 0.062624
|
|
|
+[16:58:29] Epoch 10: Loss(train): 0.056189 Loss(val): 0.056083
|
|
|
+[17:17:16] Epoch 12: Loss(train): 0.049655 Loss(val): 0.049626
|
|
|
+[17:34:08] Epoch 14: Loss(train): 0.045409 Loss(val): 0.045518
|
|
|
+[17:54:19] Epoch 16: Loss(train): 0.042162 Loss(val): 0.042254
|
|
|
+[18:10:02] Epoch 18: Loss(train): 0.039818 Loss(val): 0.040065
|
|
|
+[18:30:42] Epoch 20: Loss(train): 0.038585 Loss(val): 0.038927
|
|
|
+[18:46:52] Epoch 22: Loss(train): 0.038263 Loss(val): 0.038389
|
|
|
+[19:07:10] Epoch 24: Loss(train): 0.034990 Loss(val): 0.035632
|
|
|
+[19:25:45] Epoch 26: Loss(train): 0.034374 Loss(val): 0.035082
|
|
|
+[19:43:48] Epoch 28: Loss(train): 0.033463 Loss(val): 0.033584
|
|
|
+[20:03:44] Epoch 30: Loss(train): 0.032233 Loss(val): 0.032437
|
|
|
+[20:20:20] Epoch 32: Loss(train): 0.033065 Loss(val): 0.032645
|
|
|
+[20:41:38] Epoch 34: Loss(train): 0.032210 Loss(val): 0.032403
|
|
|
+[20:58:04] Epoch 36: Loss(train): 0.031725 Loss(val): 0.032099
|
|
|
+[21:18:34] Epoch 38: Loss(train): 0.030471 Loss(val): 0.030934
|
|
|
+[21:36:54] Epoch 40: Loss(train): 0.030312 Loss(val): 0.030813
|
|
|
+[21:38:37] FINAL(40) Loss(val): 0.030813 Accuarcy: 0.600442
|
|
|
+
|
|
|
+Search 22 of 500
|
|
|
+momentum0.98, features=[96, 192, 192], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
|
|
|
+
|
|
|
+[21:41:08] INIT Loss(val): 0.164662 Accuarcy: 0.097636
|
|
|
+[21:57:03] Epoch 2: Loss(train): 20.748877 Loss(val): 20.759123
|
|
|
+[22:12:28] Epoch 4: Loss(train): 27.568346 Loss(val): 27.566154
|
|
|
+[22:30:34] Epoch 6: Loss(train): 28.220102 Loss(val): 28.217909
|
|
|
+[22:48:10] Epoch 8: Loss(train): 67.155548 Loss(val): 67.165779
|
|
|
+[23:07:08] Epoch 10: Loss(train): 67.068855 Loss(val): 67.079079
|
|
|
+[23:23:42] Epoch 12: Loss(train): 66.994072 Loss(val): 67.004318
|
|
|
+[23:43:22] Epoch 14: Loss(train): 66.931145 Loss(val): 66.941414
|
|
|
+[23:59:21] Epoch 16: Loss(train): 66.875031 Loss(val): 66.885284
|
|
|
+[00:19:03] Epoch 18: Loss(train): 66.825371 Loss(val): 66.835571
|
|
|
+[00:36:41] Epoch 20: Loss(train): 66.781197 Loss(val): 66.791435
|
|
|
+[00:54:54] Epoch 22: Loss(train): 66.741692 Loss(val): 66.751991
|
|
|
+[01:15:18] Epoch 24: Loss(train): 66.706535 Loss(val): 66.716827
|
|
|
+[01:32:32] Epoch 26: Loss(train): 66.675232 Loss(val): 66.685478
|
|
|
+[01:54:11] Epoch 28: Loss(train): 66.647171 Loss(val): 66.657463
|
|
|
+[02:12:09] Epoch 30: Loss(train): 66.621796 Loss(val): 66.632065
|
|
|
+[02:32:33] Epoch 32: Loss(train): 66.598854 Loss(val): 66.609077
|
|
|
+[02:53:21] Epoch 34: Loss(train): 66.578270 Loss(val): 66.588493
|
|
|
+[03:10:47] Epoch 36: Loss(train): 66.560196 Loss(val): 66.570473
|
|
|
+[03:33:05] Epoch 38: Loss(train): 66.544395 Loss(val): 66.554642
|
|
|
+[03:51:21] Epoch 40: Loss(train): 66.530609 Loss(val): 66.540833
|
|
|
+[03:53:19] FINAL(40) Loss(val): 66.540833 Accuarcy: 0.080357
|
|
|
+
|
|
|
+Search 23 of 500
|
|
|
+momentum0.99, features=[64, 64, 64], dropout_rate=0.3
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
|
|
|
+
|
|
|
+[03:56:53] INIT Loss(val): 0.156261 Accuarcy: 0.086173
|
|
|
+[04:05:45] Epoch 2: Loss(train): 0.079105 Loss(val): 0.076430
|
|
|
+[04:12:50] Epoch 4: Loss(train): 0.067922 Loss(val): 0.066296
|
|
|
+[04:19:22] Epoch 6: Loss(train): 0.062268 Loss(val): 0.061061
|
|
|
+[04:29:48] Epoch 8: Loss(train): 0.059802 Loss(val): 0.059280
|
|
|
+[04:39:00] Epoch 10: Loss(train): 0.059741 Loss(val): 0.059402
|
|
|
+[04:46:13] Epoch 12: Loss(train): 0.058659 Loss(val): 0.058159
|
|
|
+[04:52:49] Epoch 14: Loss(train): 0.057998 Loss(val): 0.057408
|
|
|
+[05:03:34] Epoch 16: Loss(train): 0.057697 Loss(val): 0.057173
|
|
|
+[05:12:41] Epoch 18: Loss(train): 0.058854 Loss(val): 0.058166
|
|
|
+[05:19:47] Epoch 20: Loss(train): 0.056203 Loss(val): 0.056039
|
|
|
+[05:26:30] Epoch 22: Loss(train): 0.056706 Loss(val): 0.056652
|
|
|
+[05:37:03] Epoch 24: Loss(train): 0.057241 Loss(val): 0.057240
|
|
|
+[05:45:12] Epoch 26: Loss(train): 0.056111 Loss(val): 0.055896
|
|
|
+[05:52:35] Epoch 28: Loss(train): 0.054545 Loss(val): 0.054455
|
|
|
+[05:59:21] Epoch 30: Loss(train): 0.053666 Loss(val): 0.053996
|
|
|
+[06:06:18] Epoch 32: Loss(train): 0.055091 Loss(val): 0.055624
|
|
|
+[06:13:18] Epoch 34: Loss(train): 0.054184 Loss(val): 0.054805
|
|
|
+[06:20:29] Epoch 36: Loss(train): 0.052324 Loss(val): 0.052880
|
|
|
+[06:30:01] Epoch 38: Loss(train): 0.051825 Loss(val): 0.052219
|
|
|
+[06:38:57] Epoch 40: Loss(train): 0.050568 Loss(val): 0.051316
|
|
|
+[06:39:40] FINAL(40) Loss(val): 0.051316 Accuarcy: 0.649643
|
|
|
+
|
|
|
+Search 24 of 500
|
|
|
+momentum0.96, features=[32, 64, 128], dropout_rate=0.8
|
|
|
+kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.03
|
|
|
+
|
|
|
+[06:41:03] INIT Loss(val): 0.188385 Accuarcy: 0.083690
|
|
|
+[06:52:54] Epoch 2: Loss(train): 0.072349 Loss(val): 0.071118
|
|
|
+[07:08:32] Epoch 4: Loss(train): 0.064639 Loss(val): 0.063467
|
|
|
+[07:21:35] Epoch 6: Loss(train): 0.061816 Loss(val): 0.060563
|
|
|
+[07:37:04] Epoch 8: Loss(train): 0.058359 Loss(val): 0.057653
|
|
|
+[07:50:18] Epoch 10: Loss(train): 0.057401 Loss(val): 0.056310
|
|
|
+[08:04:59] Epoch 12: Loss(train): 0.056189 Loss(val): 0.055490
|
|
|
+[08:19:04] Epoch 14: Loss(train): 0.054788 Loss(val): 0.054267
|
|
|
+[08:33:18] Epoch 16: Loss(train): 0.054138 Loss(val): 0.053642
|
|
|
+[08:48:22] Epoch 18: Loss(train): 0.053486 Loss(val): 0.052964
|
|
|
+[09:01:45] Epoch 20: Loss(train): 0.053176 Loss(val): 0.052770
|
|
|
+[09:19:46] Epoch 22: Loss(train): 0.052395 Loss(val): 0.052135
|
|
|
+[09:32:18] Epoch 24: Loss(train): 0.052084 Loss(val): 0.051754
|
|
|
+[09:50:48] Epoch 26: Loss(train): 0.051454 Loss(val): 0.051278
|
|
|
+[10:03:51] Epoch 28: Loss(train): 0.051378 Loss(val): 0.051049
|
|
|
+[10:22:26] Epoch 30: Loss(train): 0.051123 Loss(val): 0.050865
|
|
|
+[10:35:48] Epoch 32: Loss(train): 0.050678 Loss(val): 0.050489
|
|
|
+[10:54:01] Epoch 34: Loss(train): 0.050485 Loss(val): 0.050431
|
|
|
+[11:07:16] Epoch 36: Loss(train): 0.050130 Loss(val): 0.050041
|
|
|
+[11:25:31] Epoch 38: Loss(train): 0.050138 Loss(val): 0.049954
|
|
|
+[11:39:24] Epoch 40: Loss(train): 0.049971 Loss(val): 0.049950
|
|
|
+[11:40:54] FINAL(40) Loss(val): 0.049950 Accuarcy: 0.656633
|
|
|
+
|
|
|
+Search 25 of 500
|
|
|
+momentum0.94, features=[96, 192, 192], dropout_rate=0.4
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
|
|
|
+
|
|
|
+[11:43:33] INIT Loss(val): 0.206394 Accuarcy: 0.087228
|
|
|
+[11:52:00] Epoch 2: Loss(train): 0.101289 Loss(val): 0.103436
|
|
|
+[11:59:34] Epoch 4: Loss(train): 0.080375 Loss(val): 0.080668
|
|
|
+[12:05:42] Epoch 6: Loss(train): 0.071989 Loss(val): 0.073021
|
|
|
+[12:11:22] Epoch 8: Loss(train): 0.067130 Loss(val): 0.066621
|
|
|
+[12:17:03] Epoch 10: Loss(train): 0.062482 Loss(val): 0.062284
|
|
|
+[12:26:05] Epoch 12: Loss(train): 0.059126 Loss(val): 0.059354
|
|
|
+[12:33:42] Epoch 14: Loss(train): 0.054605 Loss(val): 0.055075
|
|
|
+[12:40:10] Epoch 16: Loss(train): 0.052491 Loss(val): 0.053066
|
|
|
+[12:46:25] Epoch 18: Loss(train): 0.050310 Loss(val): 0.050966
|
|
|
+[12:52:38] Epoch 20: Loss(train): 0.048141 Loss(val): 0.048782
|
|
|
+[12:59:55] Epoch 22: Loss(train): 0.046192 Loss(val): 0.047045
|
|
|
+[13:06:18] Epoch 24: Loss(train): 0.044195 Loss(val): 0.045356
|
|
|
+[13:12:35] Epoch 26: Loss(train): 0.043286 Loss(val): 0.044734
|
|
|
+[13:18:26] Epoch 28: Loss(train): 0.042307 Loss(val): 0.043518
|
|
|
+[13:24:05] Epoch 30: Loss(train): 0.041010 Loss(val): 0.042333
|
|
|
+[13:31:27] Epoch 32: Loss(train): 0.040678 Loss(val): 0.042079
|
|
|
+[13:38:43] Epoch 34: Loss(train): 0.039944 Loss(val): 0.041404
|
|
|
+[13:45:18] Epoch 36: Loss(train): 0.039505 Loss(val): 0.040942
|
|
|
+[13:51:09] Epoch 38: Loss(train): 0.039001 Loss(val): 0.040541
|
|
|
+[13:56:48] Epoch 40: Loss(train): 0.038627 Loss(val): 0.040171
|
|
|
+[13:57:14] FINAL(40) Loss(val): 0.040171 Accuarcy: 0.615595
|
|
|
+
|
|
|
+Search 26 of 500
|
|
|
+momentum0.99, features=[64, 64, 64], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.03
|
|
|
+
|
|
|
+[13:58:10] INIT Loss(val): 0.150567 Accuarcy: 0.075561
|
|
|
+[14:05:36] Epoch 2: Loss(train): 0.109244 Loss(val): 0.109046
|
|
|
+[14:13:33] Epoch 4: Loss(train): 0.069782 Loss(val): 0.068761
|
|
|
+[14:21:46] Epoch 6: Loss(train): 0.057850 Loss(val): 0.057034
|
|
|
+[14:32:51] Epoch 8: Loss(train): 0.053643 Loss(val): 0.053023
|
|
|
+[14:41:22] Epoch 10: Loss(train): 0.051602 Loss(val): 0.051370
|
|
|
+[14:49:15] Epoch 12: Loss(train): 0.051565 Loss(val): 0.051038
|
|
|
+[14:56:52] Epoch 14: Loss(train): 0.050527 Loss(val): 0.050176
|
|
|
+[15:08:13] Epoch 16: Loss(train): 0.047978 Loss(val): 0.047917
|
|
|
+[15:16:48] Epoch 18: Loss(train): 0.046836 Loss(val): 0.046800
|
|
|
+[15:24:29] Epoch 20: Loss(train): 0.049216 Loss(val): 0.049681
|
|
|
+[15:34:18] Epoch 22: Loss(train): 0.044710 Loss(val): 0.045216
|
|
|
+[15:43:20] Epoch 24: Loss(train): 0.046563 Loss(val): 0.047376
|
|
|
+[15:51:33] Epoch 26: Loss(train): 0.042391 Loss(val): 0.042913
|
|
|
+[15:59:26] Epoch 28: Loss(train): 0.041383 Loss(val): 0.041802
|
|
|
+[16:09:13] Epoch 30: Loss(train): 0.040634 Loss(val): 0.041065
|
|
|
+[16:18:52] Epoch 32: Loss(train): 0.039923 Loss(val): 0.040496
|
|
|
+[16:27:03] Epoch 34: Loss(train): 0.040688 Loss(val): 0.042053
|
|
|
+[16:34:46] Epoch 36: Loss(train): 0.038398 Loss(val): 0.039507
|
|
|
+[16:45:25] Epoch 38: Loss(train): 0.037850 Loss(val): 0.038930
|
|
|
+[16:53:54] Epoch 40: Loss(train): 0.038935 Loss(val): 0.039747
|
|
|
+[16:54:57] FINAL(40) Loss(val): 0.039747 Accuarcy: 0.614592
|
|
|
+
|
|
|
+Search 27 of 500
|
|
|
+momentum0.98, features=[96, 192, 192], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.03
|
|
|
+
|
|
|
+[16:56:34] INIT Loss(val): 0.134213 Accuarcy: 0.091514
|
|
|
+[17:02:28] Epoch 2: Loss(train): 0.090860 Loss(val): 0.090545
|
|
|
+[17:08:42] Epoch 4: Loss(train): 0.078672 Loss(val): 0.076943
|
|
|
+[17:16:48] Epoch 6: Loss(train): 0.069592 Loss(val): 0.068936
|
|
|
+[17:23:32] Epoch 8: Loss(train): 0.066346 Loss(val): 0.065861
|
|
|
+[17:29:47] Epoch 10: Loss(train): 0.064795 Loss(val): 0.064491
|
|
|
+[17:35:36] Epoch 12: Loss(train): 0.063546 Loss(val): 0.063492
|
|
|
+[17:43:11] Epoch 14: Loss(train): 0.062957 Loss(val): 0.062895
|
|
|
+[17:50:18] Epoch 16: Loss(train): 0.062168 Loss(val): 0.062227
|
|
|
+[17:56:49] Epoch 18: Loss(train): 0.061885 Loss(val): 0.061934
|
|
|
+[18:02:49] Epoch 20: Loss(train): 0.061532 Loss(val): 0.061760
|
|
|
+Early stopping with Loss(train) 0.061861 at epoch 20 (Accuracy: 0.608146)
|
|
|
+
|
|
|
+Search 28 of 500
|
|
|
+momentum0.9, features=[64, 64, 64], dropout_rate=0.4
|
|
|
+kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
|
|
|
+
|
|
|
+[18:04:05] INIT Loss(val): 0.128106 Accuarcy: 0.102738
|
|
|
+[18:12:15] Epoch 2: Loss(train): 0.074689 Loss(val): 0.075390
|
|
|
+[18:24:22] Epoch 4: Loss(train): 0.068198 Loss(val): 0.068720
|
|
|
+[18:33:08] Epoch 6: Loss(train): 0.066180 Loss(val): 0.066643
|
|
|
+[18:40:59] Epoch 8: Loss(train): 0.064997 Loss(val): 0.065444
|
|
|
+[18:53:03] Epoch 10: Loss(train): 0.064207 Loss(val): 0.064619
|
|
|
+[19:02:48] Epoch 12: Loss(train): 0.063483 Loss(val): 0.063943
|
|
|
+[19:10:44] Epoch 14: Loss(train): 0.063037 Loss(val): 0.063462
|
|
|
+[19:21:21] Epoch 16: Loss(train): 0.062571 Loss(val): 0.063062
|
|
|
+[19:32:27] Epoch 18: Loss(train): 0.062316 Loss(val): 0.062758
|
|
|
+[19:41:00] Epoch 20: Loss(train): 0.061978 Loss(val): 0.062450
|
|
|
+[19:49:41] Epoch 22: Loss(train): 0.061717 Loss(val): 0.062215
|
|
|
+[20:02:18] Epoch 24: Loss(train): 0.061504 Loss(val): 0.062028
|
|
|
+[20:11:17] Epoch 26: Loss(train): 0.061352 Loss(val): 0.061835
|
|
|
+[20:19:18] Epoch 28: Loss(train): 0.061151 Loss(val): 0.061692
|
|
|
+[20:31:40] Epoch 30: Loss(train): 0.061015 Loss(val): 0.061562
|
|
|
+[20:41:43] Epoch 32: Loss(train): 0.060934 Loss(val): 0.061451
|
|
|
+[20:49:44] Epoch 34: Loss(train): 0.060828 Loss(val): 0.061372
|
|
|
+[21:01:36] Epoch 36: Loss(train): 0.060729 Loss(val): 0.061282
|
|
|
+[21:11:39] Epoch 38: Loss(train): 0.060642 Loss(val): 0.061227
|
|
|
+[21:20:03] Epoch 40: Loss(train): 0.060570 Loss(val): 0.061159
|
|
|
+[21:20:56] FINAL(40) Loss(val): 0.061159 Accuarcy: 0.525493
|
|
|
+
|
|
|
+Search 29 of 500
|
|
|
+momentum0.92, features=[32, 32, 32], dropout_rate=0.4
|
|
|
+kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
|
|
|
+
|
|
|
+[21:22:36] INIT Loss(val): 0.137907 Accuarcy: 0.095374
|
|
|
+[21:31:00] Epoch 2: Loss(train): 0.065825 Loss(val): 0.066324
|
|
|
+[21:40:00] Epoch 4: Loss(train): 0.058934 Loss(val): 0.057341
|
|
|
+[21:47:02] Epoch 6: Loss(train): 0.051880 Loss(val): 0.052709
|
|
|
+[21:52:58] Epoch 8: Loss(train): 0.044297 Loss(val): 0.045645
|
|
|
+[21:58:54] Epoch 10: Loss(train): 0.041006 Loss(val): 0.042122
|
|
|
+[22:04:54] Epoch 12: Loss(train): 0.040873 Loss(val): 0.042592
|
|
|
+[22:10:53] Epoch 14: Loss(train): 0.037040 Loss(val): 0.038307
|
|
|
+[22:17:16] Epoch 16: Loss(train): 0.039913 Loss(val): 0.042390
|
|
|
+[22:24:29] Epoch 18: Loss(train): 0.031755 Loss(val): 0.033696
|
|
|
+[22:32:00] Epoch 20: Loss(train): 0.030639 Loss(val): 0.030783
|
|
|
+[22:39:06] Epoch 22: Loss(train): 0.028381 Loss(val): 0.028629
|
|
|
+[22:45:35] Epoch 24: Loss(train): 0.027468 Loss(val): 0.027725
|
|
|
+[22:51:38] Epoch 26: Loss(train): 0.025523 Loss(val): 0.025599
|
|
|
+[23:00:27] Epoch 28: Loss(train): 0.025676 Loss(val): 0.025638
|
|
|
+[23:07:41] Epoch 30: Loss(train): 0.025141 Loss(val): 0.025392
|
|
|
+[23:14:21] Epoch 32: Loss(train): 0.024193 Loss(val): 0.024012
|
|
|
+[23:20:33] Epoch 34: Loss(train): 0.023470 Loss(val): 0.023429
|
|
|
+[23:28:02] Epoch 36: Loss(train): 0.022927 Loss(val): 0.022909
|
|
|
+[23:36:20] Epoch 38: Loss(train): 0.022175 Loss(val): 0.022574
|
|
|
+[23:43:15] Epoch 40: Loss(train): 0.021259 Loss(val): 0.021576
|
|
|
+[23:43:50] FINAL(40) Loss(val): 0.021576 Accuarcy: 0.537568
|
|
|
+
|
|
|
+Search 30 of 500
|
|
|
+momentum0.96, features=[96, 192, 192], dropout_rate=0.3
|
|
|
+kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
|
|
|
+
|
|
|
+[23:44:59] INIT Loss(val): 0.157926 Accuarcy: 0.096905
|
|
|
+[00:07:35] Epoch 2: Loss(train): 0.083815 Loss(val): 0.085143
|
|
|
+[00:30:44] Epoch 4: Loss(train): 0.066922 Loss(val): 0.068693
|
|
|
+[00:54:18] Epoch 6: Loss(train): 0.062800 Loss(val): 0.064619
|
|
|
+[01:19:21] Epoch 8: Loss(train): 0.055423 Loss(val): 0.056209
|
|
|
+[01:45:26] Epoch 10: Loss(train): 0.051950 Loss(val): 0.052295
|
|
|
+[02:10:56] Epoch 12: Loss(train): 0.048478 Loss(val): 0.050152
|
|
|
+[02:34:46] Epoch 14: Loss(train): 0.049978 Loss(val): 0.049653
|
|
|
+[03:01:13] Epoch 16: Loss(train): 0.043648 Loss(val): 0.045337
|
|
|
+[03:29:02] Epoch 18: Loss(train): 0.045327 Loss(val): 0.048296
|
|
|
+[03:56:01] Epoch 20: Loss(train): 0.045312 Loss(val): 0.048873
|
|
|
+[04:21:49] Epoch 22: Loss(train): 0.040705 Loss(val): 0.040873
|
|
|
+[04:45:42] Epoch 24: Loss(train): 0.046981 Loss(val): 0.049900
|
|
|
+[05:12:34] Epoch 26: Loss(train): 0.038865 Loss(val): 0.040929
|
|
|
+[05:38:34] Epoch 28: Loss(train): 0.030650 Loss(val): 0.030977
|
|
|
+[06:00:05] Epoch 30: Loss(train): 0.030971 Loss(val): 0.032735
|
|
|
+[06:25:37] Epoch 32: Loss(train): 0.032108 Loss(val): 0.030270
|
|
|
+[06:50:02] Epoch 34: Loss(train): 0.029535 Loss(val): 0.028256
|
|
|
+[07:13:34] Epoch 36: Loss(train): 0.025526 Loss(val): 0.024374
|
|
|
+[07:38:32] Epoch 38: Loss(train): 0.025246 Loss(val): 0.023842
|
|
|
+[08:03:25] Epoch 40: Loss(train): 0.024390 Loss(val): 0.023580
|
|
|
+[08:05:38] FINAL(40) Loss(val): 0.023580 Accuarcy: 0.518469
|
|
|
+
|
|
|
+Search 31 of 500
|
|
|
+momentum0.98, features=[64, 64, 64], dropout_rate=0.6
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
|
|
|
+
|
|
|
+[08:08:47] INIT Loss(val): 0.136395 Accuarcy: 0.102109
|
|
|
+[08:16:59] Epoch 2: Loss(train): 0.083085 Loss(val): 0.084971
|
|
|
+[08:28:48] Epoch 4: Loss(train): 0.070578 Loss(val): 0.071192
|
|
|
+[08:38:26] Epoch 6: Loss(train): 0.067818 Loss(val): 0.068311
|
|
|
+[08:47:17] Epoch 8: Loss(train): 0.066219 Loss(val): 0.066654
|
|
|
+[08:58:49] Epoch 10: Loss(train): 0.065115 Loss(val): 0.065624
|
|
|
+[09:08:46] Epoch 12: Loss(train): 0.064355 Loss(val): 0.064817
|
|
|
+[09:17:31] Epoch 14: Loss(train): 0.063803 Loss(val): 0.064206
|
|
|
+[09:28:50] Epoch 16: Loss(train): 0.063242 Loss(val): 0.063749
|
|
|
+[09:38:48] Epoch 18: Loss(train): 0.062930 Loss(val): 0.063295
|
|
|
+[09:47:45] Epoch 20: Loss(train): 0.062665 Loss(val): 0.063019
|
|
|
+[09:58:15] Epoch 22: Loss(train): 0.062384 Loss(val): 0.062730
|
|
|
+[10:09:26] Epoch 24: Loss(train): 0.062142 Loss(val): 0.062500
|
|
|
+[10:18:33] Epoch 26: Loss(train): 0.061943 Loss(val): 0.062314
|
|
|
+[10:30:07] Epoch 28: Loss(train): 0.061784 Loss(val): 0.062140
|
|
|
+[10:40:47] Epoch 30: Loss(train): 0.061690 Loss(val): 0.062006
|
|
|
+[10:50:03] Epoch 32: Loss(train): 0.061544 Loss(val): 0.061859
|
|
|
+[11:02:31] Epoch 34: Loss(train): 0.061405 Loss(val): 0.061765
|
|
|
+[11:13:54] Epoch 36: Loss(train): 0.061310 Loss(val): 0.061659
|
|
|
+Early stopping with Loss(train) 0.065227 at epoch 36 (Accuracy: 0.477653)
|
|
|
+
|
|
|
+Search 32 of 500
|
|
|
+momentum0.92, features=[32, 64, 128], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
|
|
|
+
|
|
|
+[11:16:41] INIT Loss(val): 0.156245 Accuarcy: 0.081514
|
|
|
+[11:35:09] Epoch 2: Loss(train): 0.075818 Loss(val): 0.075976
|
|
|
+[11:54:19] Epoch 4: Loss(train): 0.069581 Loss(val): 0.069867
|
|
|
+[12:16:03] Epoch 6: Loss(train): 0.067491 Loss(val): 0.067784
|
|
|
+[12:33:26] Epoch 8: Loss(train): 0.066309 Loss(val): 0.066613
|
|
|
+[12:55:22] Epoch 10: Loss(train): 0.065570 Loss(val): 0.065932
|
|
|
+[13:16:01] Epoch 12: Loss(train): 0.064942 Loss(val): 0.065361
|
|
|
+[13:34:16] Epoch 14: Loss(train): 0.064421 Loss(val): 0.064918
|
|
|
+[13:50:08] Epoch 16: Loss(train): 0.064045 Loss(val): 0.064583
|
|
|
+[14:10:29] Epoch 18: Loss(train): 0.063691 Loss(val): 0.064300
|
|
|
+[14:27:48] Epoch 20: Loss(train): 0.063414 Loss(val): 0.064062
|
|
|
+[14:47:52] Epoch 22: Loss(train): 0.063163 Loss(val): 0.063851
|
|
|
+[15:05:02] Epoch 24: Loss(train): 0.062957 Loss(val): 0.063692
|
|
|
+[15:25:31] Epoch 26: Loss(train): 0.062760 Loss(val): 0.063534
|
|
|
+[15:44:27] Epoch 28: Loss(train): 0.062596 Loss(val): 0.063417
|
|
|
+[16:02:11] Epoch 30: Loss(train): 0.062460 Loss(val): 0.063311
|
|
|
+[16:22:44] Epoch 32: Loss(train): 0.062348 Loss(val): 0.063210
|
|
|
+[16:40:25] Epoch 34: Loss(train): 0.062251 Loss(val): 0.063149
|
|
|
+[17:00:11] Epoch 36: Loss(train): 0.062162 Loss(val): 0.063097
|
|
|
+[17:19:44] Epoch 38: Loss(train): 0.062111 Loss(val): 0.063032
|
|
|
+[17:37:13] Epoch 40: Loss(train): 0.062047 Loss(val): 0.062991
|
|
|
+[17:39:26] FINAL(40) Loss(val): 0.062991 Accuarcy: 0.500272
|
|
|
+
|
|
|
+Search 33 of 500
|
|
|
+momentum0.94, features=[64, 64, 64], dropout_rate=0.3
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
|
|
|
+
|
|
|
+[17:44:54] INIT Loss(val): 0.129508 Accuarcy: 0.087432
|
|
|
+[18:04:53] Epoch 2: Loss(train): 0.072966 Loss(val): 0.074566
|
|
|
+[18:29:05] Epoch 4: Loss(train): 0.067318 Loss(val): 0.068274
|
|
|
+[18:53:29] Epoch 6: Loss(train): 0.064862 Loss(val): 0.065613
|
|
|
+[19:14:04] Epoch 8: Loss(train): 0.063560 Loss(val): 0.064150
|
|
|
+[19:39:54] Epoch 10: Loss(train): 0.062483 Loss(val): 0.063086
|
|
|
+[20:05:05] Epoch 12: Loss(train): 0.061835 Loss(val): 0.062398
|
|
|
+[20:28:37] Epoch 14: Loss(train): 0.061281 Loss(val): 0.061852
|
|
|
+[20:50:12] Epoch 16: Loss(train): 0.060817 Loss(val): 0.061377
|
|
|
+[21:16:16] Epoch 18: Loss(train): 0.060441 Loss(val): 0.061011
|
|
|
+[21:35:17] Epoch 20: Loss(train): 0.060146 Loss(val): 0.060714
|
|
|
+[21:58:43] Epoch 22: Loss(train): 0.059869 Loss(val): 0.060446
|
|
|
+[22:20:18] Epoch 24: Loss(train): 0.059664 Loss(val): 0.060259
|
|
|
+[22:42:47] Epoch 26: Loss(train): 0.059494 Loss(val): 0.060083
|
|
|
+[23:06:12] Epoch 28: Loss(train): 0.059329 Loss(val): 0.059940
|
|
|
+Early stopping with Loss(train) 0.062314 at epoch 29 (Accuracy: 0.436071)
|
|
|
+
|
|
|
+Search 34 of 500
|
|
|
+momentum0.94, features=[64, 64, 64], dropout_rate=0.8
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
|
|
|
+
|
|
|
+[23:23:32] INIT Loss(val): 0.161144 Accuarcy: 0.107738
|
|
|
+[23:47:42] Epoch 2: Loss(train): 0.079291 Loss(val): 0.079141
|
|
|
+[00:12:49] Epoch 4: Loss(train): 0.067550 Loss(val): 0.066014
|
|
|
+[00:39:19] Epoch 6: Loss(train): 0.063289 Loss(val): 0.061791
|
|
|
+[01:05:04] Epoch 8: Loss(train): 0.060796 Loss(val): 0.059554
|
|
|
+[01:31:19] Epoch 10: Loss(train): 0.059412 Loss(val): 0.058274
|
|
|
+[01:59:17] Epoch 12: Loss(train): 0.058747 Loss(val): 0.057489
|
|
|
+[02:28:58] Epoch 14: Loss(train): 0.058412 Loss(val): 0.057003
|
|
|
+[02:58:46] Epoch 16: Loss(train): 0.057484 Loss(val): 0.056236
|
|
|
+[03:28:32] Epoch 18: Loss(train): 0.057060 Loss(val): 0.055838
|
|
|
+[03:57:59] Epoch 20: Loss(train): 0.056660 Loss(val): 0.055544
|
|
|
+[04:26:58] Epoch 22: Loss(train): 0.056213 Loss(val): 0.055160
|
|
|
+[04:56:08] Epoch 24: Loss(train): 0.056014 Loss(val): 0.054934
|
|
|
+[05:21:16] Epoch 26: Loss(train): 0.055638 Loss(val): 0.054669
|
|
|
+[05:48:43] Epoch 28: Loss(train): 0.055279 Loss(val): 0.054408
|
|
|
+[06:13:58] Epoch 30: Loss(train): 0.055161 Loss(val): 0.054242
|
|
|
+[06:41:24] Epoch 32: Loss(train): 0.054907 Loss(val): 0.054066
|
|
|
+[07:08:20] Epoch 34: Loss(train): 0.054621 Loss(val): 0.053844
|
|
|
+[07:35:37] Epoch 36: Loss(train): 0.054479 Loss(val): 0.053736
|
|
|
+[08:03:00] Epoch 38: Loss(train): 0.054394 Loss(val): 0.053631
|
|
|
+[08:29:53] Epoch 40: Loss(train): 0.054193 Loss(val): 0.053513
|
|
|
+[08:32:42] FINAL(40) Loss(val): 0.053513 Accuarcy: 0.610051
|
|
|
+
|
|
|
+Search 35 of 500
|
|
|
+momentum0.94, features=[64, 64, 64], dropout_rate=0.3
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
|
|
|
+
|
|
|
+[08:36:22] INIT Loss(val): 0.123761 Accuarcy: 0.091531
|
|
|
+[08:57:47] Epoch 2: Loss(train): 0.065259 Loss(val): 0.065832
|
|
|
+[09:19:41] Epoch 4: Loss(train): 0.059903 Loss(val): 0.058281
|
|
|
+[09:44:11] Epoch 6: Loss(train): 0.056566 Loss(val): 0.054878
|
|
|
+[10:10:43] Epoch 8: Loss(train): 0.053432 Loss(val): 0.052172
|
|
|
+[10:35:42] Epoch 10: Loss(train): 0.051702 Loss(val): 0.050658
|
|
|
+[10:57:51] Epoch 12: Loss(train): 0.050034 Loss(val): 0.049270
|
|
|
+[11:24:31] Epoch 14: Loss(train): 0.048701 Loss(val): 0.048126
|
|
|
+[11:51:11] Epoch 16: Loss(train): 0.047392 Loss(val): 0.047040
|
|
|
+[12:17:09] Epoch 18: Loss(train): 0.046799 Loss(val): 0.046500
|
|
|
+[12:40:51] Epoch 20: Loss(train): 0.045793 Loss(val): 0.045674
|
|
|
+[13:05:28] Epoch 22: Loss(train): 0.045341 Loss(val): 0.045252
|
|
|
+[13:25:44] Epoch 24: Loss(train): 0.044809 Loss(val): 0.044760
|
|
|
+[13:50:57] Epoch 26: Loss(train): 0.044566 Loss(val): 0.044537
|
|
|
+[14:14:24] Epoch 28: Loss(train): 0.043879 Loss(val): 0.043859
|
|
|
+[14:36:11] Epoch 30: Loss(train): 0.043258 Loss(val): 0.043268
|
|
|
+[15:00:39] Epoch 32: Loss(train): 0.042763 Loss(val): 0.042793
|
|
|
+[15:25:03] Epoch 34: Loss(train): 0.042519 Loss(val): 0.042491
|
|
|
+[15:48:44] Epoch 36: Loss(train): 0.042028 Loss(val): 0.041963
|
|
|
+[16:10:14] Epoch 38: Loss(train): 0.041775 Loss(val): 0.041745
|
|
|
+[16:34:21] Epoch 40: Loss(train): 0.041268 Loss(val): 0.041277
|
|
|
+[16:37:30] FINAL(40) Loss(val): 0.041277 Accuarcy: 0.626071
|
|
|
+
|
|
|
+Search 36 of 500
|
|
|
+momentum0.94, features=[32, 32, 32], dropout_rate=0.4
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
|
|
|
+
|
|
|
+[16:42:54] INIT Loss(val): 0.113207 Accuarcy: 0.083673
|
|
|
+[17:05:24] Epoch 2: Loss(train): 0.071602 Loss(val): 0.071321
|
|
|
+[17:30:50] Epoch 4: Loss(train): 0.060653 Loss(val): 0.061529
|
|
|
+[17:55:40] Epoch 6: Loss(train): 0.050651 Loss(val): 0.051918
|
|
|
+[18:18:57] Epoch 8: Loss(train): 0.046450 Loss(val): 0.047496
|
|
|
+[18:46:06] Epoch 10: Loss(train): 0.042359 Loss(val): 0.043354
|
|
|
+[19:13:08] Epoch 12: Loss(train): 0.038272 Loss(val): 0.038781
|
|
|
+[19:39:21] Epoch 14: Loss(train): 0.039356 Loss(val): 0.039668
|
|
|
+[20:03:45] Epoch 16: Loss(train): 0.036349 Loss(val): 0.036034
|
|
|
+[20:27:40] Epoch 18: Loss(train): 0.034223 Loss(val): 0.034151
|
|
|
+[20:55:17] Epoch 20: Loss(train): 0.032276 Loss(val): 0.032745
|
|
|
+[21:16:30] Epoch 22: Loss(train): 0.029983 Loss(val): 0.030295
|
|
|
+[21:42:49] Epoch 24: Loss(train): 0.028562 Loss(val): 0.028459
|
|
|
+[22:06:22] Epoch 26: Loss(train): 0.027147 Loss(val): 0.026862
|
|
|
+[22:29:11] Epoch 28: Loss(train): 0.025605 Loss(val): 0.025301
|
|
|
+[22:54:25] Epoch 30: Loss(train): 0.025205 Loss(val): 0.025065
|
|
|
+[23:19:33] Epoch 32: Loss(train): 0.024206 Loss(val): 0.024281
|
|
|
+[23:44:35] Epoch 34: Loss(train): 0.023469 Loss(val): 0.023604
|
|
|
+[00:07:42] Epoch 36: Loss(train): 0.022483 Loss(val): 0.022621
|
|
|
+[00:31:31] Epoch 38: Loss(train): 0.022307 Loss(val): 0.022504
|
|
|
+[00:57:02] Epoch 40: Loss(train): 0.021628 Loss(val): 0.021826
|
|
|
+[01:00:15] FINAL(40) Loss(val): 0.021826 Accuarcy: 0.606854
|
|
|
+
|
|
|
+Search 37 of 500
|
|
|
+momentum0.92, features=[64, 64, 64], dropout_rate=0.8
|
|
|
+kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
|
|
|
+
|
|
|
+[01:05:55] INIT Loss(val): 0.118011 Accuarcy: 0.093418
|
|
|
+[01:28:59] Epoch 2: Loss(train): 0.071947 Loss(val): 0.071658
|
|
|
+[01:54:44] Epoch 4: Loss(train): 0.057903 Loss(val): 0.058991
|
|
|
+[02:20:57] Epoch 6: Loss(train): 0.048510 Loss(val): 0.047729
|
|
|
+[02:46:19] Epoch 8: Loss(train): 0.042900 Loss(val): 0.043739
|
|
|
+[03:11:28] Epoch 10: Loss(train): 0.036034 Loss(val): 0.035340
|
|
|
+[03:38:58] Epoch 12: Loss(train): 0.035133 Loss(val): 0.036576
|
|
|
+[04:06:04] Epoch 14: Loss(train): 0.031527 Loss(val): 0.032155
|
|
|
+[04:33:18] Epoch 16: Loss(train): 0.032142 Loss(val): 0.033449
|
|
|
+[04:56:07] Epoch 18: Loss(train): 0.029012 Loss(val): 0.028829
|
|
|
+[05:20:51] Epoch 20: Loss(train): 0.027290 Loss(val): 0.027411
|
|
|
+[05:43:24] Epoch 22: Loss(train): 0.026393 Loss(val): 0.025477
|
|
|
+[06:09:01] Epoch 24: Loss(train): 0.025136 Loss(val): 0.024777
|
|
|
+[06:34:51] Epoch 26: Loss(train): 0.023614 Loss(val): 0.022565
|
|
|
+[07:00:12] Epoch 28: Loss(train): 0.023541 Loss(val): 0.023284
|
|
|
+[07:24:35] Epoch 30: Loss(train): 0.023083 Loss(val): 0.022527
|
|
|
+[07:48:19] Epoch 32: Loss(train): 0.022078 Loss(val): 0.021276
|
|
|
+[08:12:51] Epoch 34: Loss(train): 0.021870 Loss(val): 0.021672
|
|
|
+[08:36:53] Epoch 36: Loss(train): 0.021393 Loss(val): 0.021033
|
|
|
+[09:00:56] Epoch 38: Loss(train): 0.021274 Loss(val): 0.020903
|
|
|
+[09:27:55] Epoch 40: Loss(train): 0.022459 Loss(val): 0.021333
|
|
|
+[09:31:11] FINAL(40) Loss(val): 0.021333 Accuarcy: 0.573265
|
|
|
+
|
|
|
+Search 38 of 500
|
|
|
+momentum0.92, features=[96, 192, 192], dropout_rate=0.8
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
|
|
|
+
|
|
|
+[09:40:13] INIT Loss(val): 0.177381 Accuarcy: 0.082194
|
|
|
+[10:02:06] Epoch 2: Loss(train): 0.100145 Loss(val): 0.101442
|
|
|
+[10:28:32] Epoch 4: Loss(train): 0.090080 Loss(val): 0.090478
|
|
|
+[10:54:33] Epoch 6: Loss(train): 0.086961 Loss(val): 0.087106
|
|
|
+[11:18:52] Epoch 8: Loss(train): 0.085055 Loss(val): 0.085218
|
|
|
+[11:42:03] Epoch 10: Loss(train): 0.084008 Loss(val): 0.084082
|
|
|
+[12:08:51] Epoch 12: Loss(train): 0.083061 Loss(val): 0.083309
|
|
|
+[12:34:18] Epoch 14: Loss(train): 0.082237 Loss(val): 0.082573
|
|
|
+[12:54:57] Epoch 16: Loss(train): 0.082143 Loss(val): 0.082355
|
|
|
+[13:18:12] Epoch 18: Loss(train): 0.081369 Loss(val): 0.081832
|
|
|
+[13:40:38] Epoch 20: Loss(train): 0.081240 Loss(val): 0.081622
|
|
|
+[14:05:08] Epoch 22: Loss(train): 0.080846 Loss(val): 0.081271
|
|
|
+[14:28:44] Epoch 24: Loss(train): 0.080775 Loss(val): 0.081209
|
|
|
+Early stopping with Loss(train) 0.087498 at epoch 24 (Accuracy: 0.458163)
|
|
|
+
|
|
|
+Search 39 of 500
|
|
|
+momentum0.94, features=[64, 64, 64], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
|
|
|
+
|
|
|
+[14:32:44] INIT Loss(val): 0.131732 Accuarcy: 0.093946
|
|
|
+[14:43:04] Epoch 2: Loss(train): 0.081255 Loss(val): 0.079859
|
|
|
+[14:57:19] Epoch 4: Loss(train): 0.068332 Loss(val): 0.067841
|
|
|
+[15:09:13] Epoch 6: Loss(train): 0.064528 Loss(val): 0.064704
|
|
|
+[15:21:16] Epoch 8: Loss(train): 0.062921 Loss(val): 0.063261
|
|
|
+[15:34:46] Epoch 10: Loss(train): 0.062030 Loss(val): 0.062498
|
|
|
+[15:45:50] Epoch 12: Loss(train): 0.061265 Loss(val): 0.061891
|
|
|
+[16:00:28] Epoch 14: Loss(train): 0.060731 Loss(val): 0.061435
|
|
|
+[16:12:25] Epoch 16: Loss(train): 0.060351 Loss(val): 0.061083
|
|
|
+[16:24:49] Epoch 18: Loss(train): 0.060006 Loss(val): 0.060862
|
|
|
+[16:37:32] Epoch 20: Loss(train): 0.059765 Loss(val): 0.060644
|
|
|
+[16:48:56] Epoch 22: Loss(train): 0.059551 Loss(val): 0.060483
|
|
|
+[17:01:56] Epoch 24: Loss(train): 0.059328 Loss(val): 0.060275
|
|
|
+[17:14:41] Epoch 26: Loss(train): 0.059153 Loss(val): 0.060095
|
|
|
+[17:26:03] Epoch 28: Loss(train): 0.058965 Loss(val): 0.059951
|
|
|
+[17:40:07] Epoch 30: Loss(train): 0.058867 Loss(val): 0.059819
|
|
|
+[17:52:28] Epoch 32: Loss(train): 0.058637 Loss(val): 0.059653
|
|
|
+[18:05:08] Epoch 34: Loss(train): 0.058543 Loss(val): 0.059542
|
|
|
+[18:19:54] Epoch 36: Loss(train): 0.058402 Loss(val): 0.059439
|
|
|
+[18:30:58] Epoch 38: Loss(train): 0.058293 Loss(val): 0.059341
|
|
|
+Early stopping with Loss(train) 0.059225 at epoch 38 (Accuracy: 0.544405)
|
|
|
+
|
|
|
+Search 40 of 500
|
|
|
+momentum0.92, features=[32, 32, 32], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
|
|
|
+
|
|
|
+[18:34:47] INIT Loss(val): 0.124025 Accuarcy: 0.088776
|
|
|
+[18:47:33] Epoch 2: Loss(train): 0.057543 Loss(val): 0.058215
|
|
|
+[18:57:06] Epoch 4: Loss(train): 0.051879 Loss(val): 0.052554
|
|
|
+[19:05:25] Epoch 6: Loss(train): 0.048303 Loss(val): 0.048884
|
|
|
+[19:19:12] Epoch 8: Loss(train): 0.047418 Loss(val): 0.046097
|
|
|
+[19:28:58] Epoch 10: Loss(train): 0.046238 Loss(val): 0.044915
|
|
|
+[19:37:28] Epoch 12: Loss(train): 0.044154 Loss(val): 0.043053
|
|
|
+[19:51:17] Epoch 14: Loss(train): 0.042655 Loss(val): 0.041790
|
|
|
+[20:01:13] Epoch 16: Loss(train): 0.041199 Loss(val): 0.040503
|
|
|
+[20:09:50] Epoch 18: Loss(train): 0.040215 Loss(val): 0.039571
|
|
|
+[20:23:19] Epoch 20: Loss(train): 0.039205 Loss(val): 0.038591
|
|
|
+[20:33:47] Epoch 22: Loss(train): 0.038505 Loss(val): 0.037907
|
|
|
+[20:42:15] Epoch 24: Loss(train): 0.037870 Loss(val): 0.037287
|
|
|
+[20:50:49] Epoch 26: Loss(train): 0.037377 Loss(val): 0.036808
|
|
|
+[20:59:19] Epoch 28: Loss(train): 0.036958 Loss(val): 0.036429
|
|
|
+[21:08:32] Epoch 30: Loss(train): 0.036559 Loss(val): 0.036016
|
|
|
+[21:21:13] Epoch 32: Loss(train): 0.036171 Loss(val): 0.035656
|
|
|
+[21:30:26] Epoch 34: Loss(train): 0.035821 Loss(val): 0.035373
|
|
|
+[21:39:16] Epoch 36: Loss(train): 0.035724 Loss(val): 0.035267
|
|
|
+[21:51:46] Epoch 38: Loss(train): 0.035684 Loss(val): 0.035258
|
|
|
+[22:01:20] Epoch 40: Loss(train): 0.035597 Loss(val): 0.035128
|
|
|
+[22:02:18] FINAL(40) Loss(val): 0.035128 Accuarcy: 0.636701
|
|
|
+
|
|
|
+Search 41 of 500
|
|
|
+momentum0.98, features=[64, 64, 64], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
|
|
|
+
|
|
|
+[22:03:51] INIT Loss(val): 0.116976 Accuarcy: 0.093078
|
|
|
+[22:29:47] Epoch 2: Loss(train): 0.064875 Loss(val): 0.063949
|
|
|
+[22:57:17] Epoch 4: Loss(train): 0.059843 Loss(val): 0.058989
|
|
|
+[23:24:07] Epoch 6: Loss(train): 0.057889 Loss(val): 0.057287
|
|
|
+[23:50:54] Epoch 8: Loss(train): 0.056778 Loss(val): 0.056329
|
|
|
+[00:17:41] Epoch 10: Loss(train): 0.056209 Loss(val): 0.055885
|
|
|
+[00:43:47] Epoch 12: Loss(train): 0.055611 Loss(val): 0.055446
|
|
|
+[01:11:43] Epoch 14: Loss(train): 0.055447 Loss(val): 0.055392
|
|
|
+[01:40:33] Epoch 16: Loss(train): 0.055111 Loss(val): 0.055106
|
|
|
+[02:09:24] Epoch 18: Loss(train): 0.054887 Loss(val): 0.054910
|
|
|
+[02:39:30] Epoch 20: Loss(train): 0.054918 Loss(val): 0.054874
|
|
|
+[03:09:24] Epoch 22: Loss(train): 0.054555 Loss(val): 0.054594
|
|
|
+[03:38:37] Epoch 24: Loss(train): 0.054447 Loss(val): 0.054464
|
|
|
+[04:07:54] Epoch 26: Loss(train): 0.054165 Loss(val): 0.054282
|
|
|
+[04:34:20] Epoch 28: Loss(train): 0.053983 Loss(val): 0.054111
|
|
|
+[05:01:39] Epoch 30: Loss(train): 0.053737 Loss(val): 0.053914
|
|
|
+[05:27:48] Epoch 32: Loss(train): 0.053491 Loss(val): 0.053724
|
|
|
+[05:55:10] Epoch 34: Loss(train): 0.053195 Loss(val): 0.053495
|
|
|
+[06:23:22] Epoch 36: Loss(train): 0.052964 Loss(val): 0.053314
|
|
|
+[06:51:28] Epoch 38: Loss(train): 0.052682 Loss(val): 0.053067
|
|
|
+[07:19:10] Epoch 40: Loss(train): 0.052387 Loss(val): 0.052851
|
|
|
+[07:23:01] FINAL(40) Loss(val): 0.052851 Accuarcy: 0.607602
|
|
|
+
|
|
|
+Search 42 of 500
|
|
|
+momentum0.96, features=[32, 64, 128], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
|
|
|
+
|
|
|
+[07:29:16] INIT Loss(val): 0.176981 Accuarcy: 0.089626
|
|
|
+[08:08:38] Epoch 2: Loss(train): 0.084734 Loss(val): 0.084191
|
|
|
+[08:51:50] Epoch 4: Loss(train): 0.074645 Loss(val): 0.074708
|
|
|
+[09:34:55] Epoch 6: Loss(train): 0.071603 Loss(val): 0.072190
|
|
|
+[10:19:23] Epoch 8: Loss(train): 0.070126 Loss(val): 0.070948
|
|
|
+[11:06:15] Epoch 10: Loss(train): 0.069323 Loss(val): 0.070290
|