|
@@ -60,7 +60,7 @@ const printout_interval = 5
|
|
|
const save_interval = 25
|
|
|
const time_format = "HH:MM:SS"
|
|
|
const date_format = "dd_mm_yyyy"
|
|
|
-data_size = (48, 6) # resulting in a 240ms frame
|
|
|
+data_size = (60, 6) # resulting in a 300ms frame
|
|
|
|
|
|
# ARCHITECTURE
|
|
|
channels = 1
|
|
@@ -70,13 +70,13 @@ features3 = 128 # needs to find the relation between the axis which represents t
|
|
|
kernel1 = (3,1) # convolute only horizontally
|
|
|
kernel2 = kernel1 # same here
|
|
|
kernel3 = (3, 6) # this should convolute all 6 rows together to map relations between the channels
|
|
|
-pooldims1 = (2,1)# (24,6)
|
|
|
-pooldims2 = (2,1)# (12,6)
|
|
|
+pooldims1 = (2,1)# (30,6)
|
|
|
+pooldims2 = (2,1)# (15,6)
|
|
|
# pooldims3 = (2,1)# (1, 4)
|
|
|
-inputDense1 = 1280 # prod(data_size .÷ pooldims1 .÷ pooldims2 .÷ kernel3) * features3
|
|
|
-inputDense2 = 500
|
|
|
+inputDense1 = 1664 # prod(data_size .÷ pooldims1 .÷ pooldims2 .÷ kernel3) * features3
|
|
|
+inputDense2 = 600
|
|
|
inputDense3 = 300
|
|
|
-dropout_rate = 0.1f0
|
|
|
+dropout_rate = 0.3f0
|
|
|
|
|
|
dataset_folderpath = "../MATLAB/TrainingData/"
|
|
|
dataset_name = "2019_09_09_1658"
|
|
@@ -103,7 +103,7 @@ end
|
|
|
|
|
|
function loss(x, y)
|
|
|
# quadratic euclidean distance + parameternorm?
|
|
|
- return Flux.mse(model(x), y)
|
|
|
+ return Flux.mse(model(x), y) + lambda * sum(norm, params(model))
|
|
|
end
|
|
|
|
|
|
function loss(dataset)
|