|
@@ -0,0 +1,225 @@
|
|
|
+
|
|
|
+"""
|
|
|
+Author: Sebastian Vendt, University of Ulm
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+"""
|
|
|
+
|
|
|
+using ArgParse
|
|
|
+s = ArgParseSettings()
|
|
|
+@add_arg_table s begin
|
|
|
+ "--gpu"
|
|
|
+ help = "set, if you want to train on the GPU"
|
|
|
+ action = :store_true
|
|
|
+ "--eval"
|
|
|
+ help = "set, if you want to validate instead of test after training"
|
|
|
+ action = :store_true
|
|
|
+ "--learn"
|
|
|
+ help = "learning rate"
|
|
|
+ arg_type = Float32
|
|
|
+ default = 0.1f0
|
|
|
+ "--epochs"
|
|
|
+ help = "Number of epochs"
|
|
|
+ arg_type = Int64
|
|
|
+ default = 100
|
|
|
+ "--logmsg"
|
|
|
+ help = "additional message describing the training log"
|
|
|
+ arg_type = String
|
|
|
+ default = ""
|
|
|
+ "--csv"
|
|
|
+ help = "set, if you additionally want a csv output of the learning process"
|
|
|
+ action = :store_true
|
|
|
+end
|
|
|
+parsed_args = parse_args(ARGS, s)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+using Flux, Statistics
|
|
|
+using Flux: onecold
|
|
|
+using BSON
|
|
|
+using Dates
|
|
|
+using Printf
|
|
|
+using NNlib
|
|
|
+using FeedbackNets
|
|
|
+include("./dataManager.jl")
|
|
|
+include("./verbose.jl")
|
|
|
+using .dataManager: make_batch
|
|
|
+using .verbose
|
|
|
+using Logging
|
|
|
+import LinearAlgebra: norm
|
|
|
+norm(x::TrackedArray{T}) where T = sqrt(sum(abs2.(x)) + eps(T))
|
|
|
+
|
|
|
+
|
|
|
+######################
|
|
|
+# PARAMETERS
|
|
|
+######################
|
|
|
+const batch_size = 100
|
|
|
+const momentum = 0.9f0
|
|
|
+const lambda = 0.0005f0
|
|
|
+learning_rate = parsed_args["learn"]
|
|
|
+validate = parsed_args["eval"]
|
|
|
+const epochs = parsed_args["epochs"]
|
|
|
+const decay_rate = 0.1f0
|
|
|
+const decay_step = 40
|
|
|
+const usegpu = parsed_args["gpu"]
|
|
|
+const printout_interval = 5
|
|
|
+const save_interval = 25
|
|
|
+const time_format = "HH:MM:SS"
|
|
|
+const date_format = "dd_mm_yyyy"
|
|
|
+data_size = (60, 6) # resulting in a 300ms frame
|
|
|
+
|
|
|
+# ARCHITECTURE
|
|
|
+channels = 1
|
|
|
+features1 = 32
|
|
|
+features2 = 64
|
|
|
+features3 = 128 # needs to find the relation between the axis which represents the screen position
|
|
|
+kernel1 = (3,1) # convolute only horizontally
|
|
|
+kernel2 = kernel1 # same here
|
|
|
+kernel3 = (3, 6) # this should convolute all 6 rows together to map relations between the channels
|
|
|
+pooldims1 = (2,1)# (30,6)
|
|
|
+pooldims2 = (2,1)# (15,6)
|
|
|
+# pooldims3 = (2,1)# (1, 4)
|
|
|
+inputDense1 = 1664 # prod(data_size .÷ pooldims1 .÷ pooldims2 .÷ kernel3) * features3
|
|
|
+inputDense2 = 600
|
|
|
+inputDense3 = 300
|
|
|
+dropout_rate = 0.3f0
|
|
|
+
|
|
|
+dataset_folderpath = "../MATLAB/TrainingData/"
|
|
|
+dataset_name = "2019_09_09_1658"
|
|
|
+
|
|
|
+const model_save_location = "../trainedModels/"
|
|
|
+const log_save_location = "./logs/"
|
|
|
+
|
|
|
+if usegpu
|
|
|
+ using CuArrays
|
|
|
+end
|
|
|
+
|
|
|
+debug_str = ""
|
|
|
+log_msg = parsed_args["logmsg"]
|
|
|
+csv_out = parse_args["csv"]
|
|
|
+@debug begin
|
|
|
+ global debug_str
|
|
|
+ debug_str = "DEBUG_"
|
|
|
+ "------DEBUGGING ACTIVATED------"
|
|
|
+end
|
|
|
+
|
|
|
+io = nothing
|
|
|
+io_csv = nothing
|
|
|
+
|
|
|
+function adapt_learnrate(epoch_idx)
|
|
|
+ return init_learning_rate * decay_rate^(epoch_idx / decay_step)
|
|
|
+end
|
|
|
+
|
|
|
+function loss(model, x, y)
|
|
|
+ # quadratic euclidean distance + parameternorm
|
|
|
+ return Flux.mse(model(x), y) + lambda * sum(norm, params(model))
|
|
|
+end
|
|
|
+
|
|
|
+function loss(model, dataset)
|
|
|
+ loss_val = 0.0f0
|
|
|
+ for (data, labels) in dataset
|
|
|
+ loss_val += Tracker.data(loss(model, data, labels))
|
|
|
+ end
|
|
|
+ return loss_val / length(dataset)
|
|
|
+end
|
|
|
+
|
|
|
+function load_dataset()
|
|
|
+ train = make_batch(dataset_folderpath, "$(dataset_name)_TRAIN.mat", normalize_data=false, truncate_data=false)
|
|
|
+ val = make_batch(dataset_folderpath, "$(dataset_name)_VAL.mat", normalize_data=false, truncate_data=false)
|
|
|
+ test = make_batch(dataset_folderpath, "$(dataset_name)_TEST.mat", normalize_data=false, truncate_data=false)
|
|
|
+ return (train, val, test)
|
|
|
+end
|
|
|
+
|
|
|
+function create_model()
|
|
|
+ return Chain(
|
|
|
+ Conv(kernel1, channels=>features1, relu, pad=map(x -> x ÷ 2, kernel1)),
|
|
|
+ MaxPool(pooldims1, stride=pooldims1),
|
|
|
+ Conv(kernel2, features1=>features2, relu, pad=map(x -> x ÷ 2, kernel2)),
|
|
|
+ MaxPool(pooldims2, stride=pooldims2),
|
|
|
+ Conv(kernel3, features2=>features3, relu),
|
|
|
+ # MaxPool(),
|
|
|
+ flatten,
|
|
|
+ Dense(inputDense1, inputDense2, relu),
|
|
|
+ Dropout(dropout_rate),
|
|
|
+ Dense(inputDense2, inputDense3, relu),
|
|
|
+ Dropout(dropout_rate),
|
|
|
+ Dense(inputDense3, 2, σ), # coordinates between 0 and 1
|
|
|
+ )
|
|
|
+end
|
|
|
+
|
|
|
+function log(model, epoch, use_testset)
|
|
|
+ Flux.testmode!(model, true)
|
|
|
+
|
|
|
+ if(epoch == 0 | epoch == epochs) # evalutation phase
|
|
|
+ if(use_testset) @printf(io, "[%s] Epoch %3d: Loss(test): %f\n", Dates.format(now(), time_format), epoch, loss(model, test_set))
|
|
|
+ else @printf(io, "[%s] Epoch %3d: Loss(val): %f\n", Dates.format(now(), time_format), epoch, loss(model, validation_set)) end
|
|
|
+ else # learning phase
|
|
|
+ @printf(io, "[%s] Epoch %3d: Loss(train): %f\n", Dates.format(now(), time_format), epoch, loss(model, train_set))
|
|
|
+ end
|
|
|
+
|
|
|
+ if(csv_out) @printf(io_csv, "%d, %f\n", epoch, loss(model, train_set)) end
|
|
|
+
|
|
|
+ Flux.testmode!(model, false)
|
|
|
+end
|
|
|
+
|
|
|
+function train_model()
|
|
|
+ model = create_model()
|
|
|
+ if(usegpu) model = gpu(model) end
|
|
|
+
|
|
|
+ opt = Momentum(learning_rate, momentum)
|
|
|
+ log(model, 0, !validate)
|
|
|
+ for i in 1:epochs
|
|
|
+ flush(io)
|
|
|
+ Flux.testmode!(model, false) # bring model in training mode
|
|
|
+ Flux.train!((x, y) -> loss(model, x, y), params(model), train_set, opt)
|
|
|
+ opt.eta = adapt_learnrate(i)
|
|
|
+ if (rem(i, printout_interval) == 0)
|
|
|
+ log(model, i, false)
|
|
|
+ end
|
|
|
+ end
|
|
|
+ log(model, epochs, !validate)
|
|
|
+end
|
|
|
+
|
|
|
+# logging framework
|
|
|
+fp = "$(log_save_location)$(debug_str)log_$(Dates.format(now(), date_format)).log"
|
|
|
+io = open(fp, "a+")
|
|
|
+global_logger(SimpleLogger(io)) # for debug outputs
|
|
|
+@printf(Base.stdout, "Logging to File: %s\n", fp)
|
|
|
+@printf(io, "\n--------[%s %s]--------\n", Dates.format(now(), date_format), Dates.format(now(), time_format))
|
|
|
+@printf(io, "%s\n", log_msg)
|
|
|
+
|
|
|
+# csv handling
|
|
|
+if (csv_out)
|
|
|
+ fp_csv = "$(log_save_location)$(debug_str)csv_$(Dates.format(now(), date_format)).csv"
|
|
|
+ io_csv = open(fp_csv, "w+") # read, write, create, truncate
|
|
|
+ @printf(io_csv, "epoch, loss(train)\n")
|
|
|
+end
|
|
|
+
|
|
|
+# dump configuration
|
|
|
+@debug begin
|
|
|
+ for symbol in names(Main)
|
|
|
+ var = "$(symbol) = $(eval(symbol))"
|
|
|
+ @printf(io, "%s\n", var)
|
|
|
+ end
|
|
|
+ "--------End of VAR DUMP--------"
|
|
|
+end
|
|
|
+flush(io)
|
|
|
+flush(Base.stdout)
|
|
|
+
|
|
|
+train_set, validation_set, test_set = load_dataset()
|
|
|
+
|
|
|
+if (usegpu)
|
|
|
+ train_set = gpu.(train_set)
|
|
|
+ validation_set = gpu.(validation_set)
|
|
|
+ test_set = gpu.(test_set)
|
|
|
+end
|
|
|
+
|
|
|
+
|
|
|
+train_model()
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|