|
@@ -0,0 +1,176 @@
|
|
|
+
|
|
|
+--------[18_09_2019 15:33:43]--------
|
|
|
+Random Grid Search
|
|
|
+
|
|
|
+Search 1 of 500
|
|
|
+momentum0.92, features=[32, 32, 32], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
|
|
|
+
|
|
|
+[15:34:55] INIT Loss(val): 0.125317
|
|
|
+[15:36:49] Epoch 2: Loss(train): 0.075287 Loss(val): 0.075063
|
|
|
+[15:37:26] Epoch 4: Loss(train): 0.068476 Loss(val): 0.069180
|
|
|
+[15:37:55] Epoch 6: Loss(train): 0.065515 Loss(val): 0.066542
|
|
|
+[15:38:22] Epoch 8: Loss(train): 0.063886 Loss(val): 0.064420
|
|
|
+[15:38:53] Epoch 10: Loss(train): 0.063473 Loss(val): 0.062857
|
|
|
+[15:39:23] Epoch 12: Loss(train): 0.061911 Loss(val): 0.061451
|
|
|
+[15:39:52] Epoch 14: Loss(train): 0.060242 Loss(val): 0.059912
|
|
|
+[15:40:22] Epoch 16: Loss(train): 0.058877 Loss(val): 0.058791
|
|
|
+[15:40:51] Epoch 18: Loss(train): 0.058132 Loss(val): 0.058110
|
|
|
+[15:41:19] Epoch 20: Loss(train): 0.057336 Loss(val): 0.057570
|
|
|
+[15:41:49] Epoch 22: Loss(train): 0.056594 Loss(val): 0.056818
|
|
|
+Early stopping at 0
|
|
|
+Search 2 of 500
|
|
|
+momentum0.94, features=[64, 64, 64], dropout_rate=0.6
|
|
|
+kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
|
|
|
+
|
|
|
+[15:41:55] INIT Loss(val): 0.129147
|
|
|
+[15:42:23] Epoch 2: Loss(train): 0.078632 Loss(val): 0.078414
|
|
|
+[15:42:54] Epoch 4: Loss(train): 0.070202 Loss(val): 0.070887
|
|
|
+[15:43:22] Epoch 6: Loss(train): 0.066139 Loss(val): 0.066908
|
|
|
+[15:43:51] Epoch 8: Loss(train): 0.063795 Loss(val): 0.063834
|
|
|
+[15:44:19] Epoch 10: Loss(train): 0.063544 Loss(val): 0.062947
|
|
|
+[15:44:48] Epoch 12: Loss(train): 0.061362 Loss(val): 0.060898
|
|
|
+[15:45:18] Epoch 14: Loss(train): 0.060353 Loss(val): 0.060166
|
|
|
+[15:45:51] Epoch 16: Loss(train): 0.058804 Loss(val): 0.059007
|
|
|
+[15:46:21] Epoch 18: Loss(train): 0.057630 Loss(val): 0.057931
|
|
|
+[15:46:51] Epoch 20: Loss(train): 0.056580 Loss(val): 0.056976
|
|
|
+[15:47:19] Epoch 22: Loss(train): 0.055983 Loss(val): 0.056418
|
|
|
+[15:47:48] Epoch 24: Loss(train): 0.055619 Loss(val): 0.055914
|
|
|
+[15:48:20] Epoch 26: Loss(train): 0.054729 Loss(val): 0.055086
|
|
|
+[15:48:52] Epoch 28: Loss(train): 0.054222 Loss(val): 0.054575
|
|
|
+[15:49:27] FINAL(30) Loss(val): 0.054254
|
|
|
+[15:49:30] FINAL(30) Loss(val): 0.054254
|
|
|
+
|
|
|
+Search 3 of 500
|
|
|
+momentum0.94, features=[64, 64, 64], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
|
|
|
+
|
|
|
+[15:49:31] INIT Loss(val): 0.126161
|
|
|
+[15:49:59] Epoch 2: Loss(train): 0.077885 Loss(val): 0.078426
|
|
|
+[15:50:34] Epoch 4: Loss(train): 0.070761 Loss(val): 0.071715
|
|
|
+[15:51:04] Epoch 6: Loss(train): 0.067634 Loss(val): 0.068910
|
|
|
+[15:51:33] Epoch 8: Loss(train): 0.065403 Loss(val): 0.066819
|
|
|
+[15:52:02] Epoch 10: Loss(train): 0.064137 Loss(val): 0.064249
|
|
|
+[15:52:30] Epoch 12: Loss(train): 0.062744 Loss(val): 0.062782
|
|
|
+[15:53:00] Epoch 14: Loss(train): 0.061248 Loss(val): 0.061450
|
|
|
+[15:53:29] Epoch 16: Loss(train): 0.059991 Loss(val): 0.060319
|
|
|
+[15:53:58] Epoch 18: Loss(train): 0.058670 Loss(val): 0.059030
|
|
|
+[15:54:29] Epoch 20: Loss(train): 0.057977 Loss(val): 0.058384
|
|
|
+[15:55:01] Epoch 22: Loss(train): 0.056949 Loss(val): 0.057303
|
|
|
+[15:55:30] Epoch 24: Loss(train): 0.056464 Loss(val): 0.056771
|
|
|
+[15:55:59] Epoch 26: Loss(train): 0.055319 Loss(val): 0.055677
|
|
|
+[15:56:29] Epoch 28: Loss(train): 0.055020 Loss(val): 0.055222
|
|
|
+[15:56:59] FINAL(30) Loss(val): 0.054447
|
|
|
+[15:57:02] FINAL(30) Loss(val): 0.054447
|
|
|
+
|
|
|
+Search 4 of 500
|
|
|
+momentum0.94, features=[96, 192, 192], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
|
|
|
+
|
|
|
+[15:57:03] INIT Loss(val): 0.143514
|
|
|
+[15:57:29] Epoch 2: Loss(train): 0.077462 Loss(val): 0.078461
|
|
|
+[15:57:59] Epoch 4: Loss(train): 0.070687 Loss(val): 0.072219
|
|
|
+[15:58:30] Epoch 6: Loss(train): 0.067443 Loss(val): 0.068943
|
|
|
+[15:58:58] Epoch 8: Loss(train): 0.064753 Loss(val): 0.064823
|
|
|
+[15:59:28] Epoch 10: Loss(train): 0.063935 Loss(val): 0.063728
|
|
|
+[15:59:57] Epoch 12: Loss(train): 0.061962 Loss(val): 0.061995
|
|
|
+[16:00:27] Epoch 14: Loss(train): 0.061007 Loss(val): 0.061087
|
|
|
+[16:00:57] Epoch 16: Loss(train): 0.059649 Loss(val): 0.059899
|
|
|
+[16:01:26] Epoch 18: Loss(train): 0.059178 Loss(val): 0.059439
|
|
|
+[16:01:56] Epoch 20: Loss(train): 0.058152 Loss(val): 0.058421
|
|
|
+[16:02:25] Epoch 22: Loss(train): 0.057042 Loss(val): 0.057437
|
|
|
+[16:02:55] Epoch 24: Loss(train): 0.056095 Loss(val): 0.056463
|
|
|
+[16:03:25] Epoch 26: Loss(train): 0.055047 Loss(val): 0.055456
|
|
|
+[16:03:54] Epoch 28: Loss(train): 0.054421 Loss(val): 0.054925
|
|
|
+[16:04:24] FINAL(30) Loss(val): 0.054328
|
|
|
+[16:04:27] FINAL(30) Loss(val): 0.054328
|
|
|
+
|
|
|
+Search 5 of 500
|
|
|
+momentum0.94, features=[32, 32, 32], dropout_rate=0.3
|
|
|
+kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.03
|
|
|
+
|
|
|
+[16:04:27] INIT Loss(val): 0.142138
|
|
|
+[16:04:55] Epoch 2: Loss(train): 0.078344 Loss(val): 0.079304
|
|
|
+[16:05:24] Epoch 4: Loss(train): 0.069910 Loss(val): 0.070895
|
|
|
+[16:05:54] Epoch 6: Loss(train): 0.066428 Loss(val): 0.067457
|
|
|
+[16:06:23] Epoch 8: Loss(train): 0.063501 Loss(val): 0.064552
|
|
|
+[16:06:53] Epoch 10: Loss(train): 0.062729 Loss(val): 0.062416
|
|
|
+[16:07:23] Epoch 12: Loss(train): 0.061756 Loss(val): 0.061395
|
|
|
+[16:07:53] Epoch 14: Loss(train): 0.059968 Loss(val): 0.059828
|
|
|
+[16:08:22] Epoch 16: Loss(train): 0.059002 Loss(val): 0.058909
|
|
|
+[16:08:52] Epoch 18: Loss(train): 0.058062 Loss(val): 0.058228
|
|
|
+[16:09:22] Epoch 20: Loss(train): 0.057697 Loss(val): 0.057969
|
|
|
+[16:09:52] Epoch 22: Loss(train): 0.057117 Loss(val): 0.057452
|
|
|
+[16:10:22] Epoch 24: Loss(train): 0.056149 Loss(val): 0.056525
|
|
|
+[16:10:53] Epoch 26: Loss(train): 0.055586 Loss(val): 0.055998
|
|
|
+[16:11:23] Epoch 28: Loss(train): 0.054670 Loss(val): 0.055118
|
|
|
+[16:11:53] FINAL(30) Loss(val): 0.054470
|
|
|
+[16:11:56] FINAL(30) Loss(val): 0.054470
|
|
|
+
|
|
|
+Search 6 of 500
|
|
|
+momentum0.9, features=[64, 64, 64], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.1
|
|
|
+
|
|
|
+[16:11:57] INIT Loss(val): 0.130219
|
|
|
+[16:12:25] Epoch 2: Loss(train): 0.077388 Loss(val): 0.077279
|
|
|
+[16:12:55] Epoch 4: Loss(train): 0.068726 Loss(val): 0.069355
|
|
|
+[16:13:26] Epoch 6: Loss(train): 0.065969 Loss(val): 0.066996
|
|
|
+[16:13:56] Epoch 8: Loss(train): 0.064049 Loss(val): 0.065168
|
|
|
+[16:14:26] Epoch 10: Loss(train): 0.062873 Loss(val): 0.062917
|
|
|
+[16:14:56] Epoch 12: Loss(train): 0.063614 Loss(val): 0.063174
|
|
|
+[16:15:26] Epoch 14: Loss(train): 0.061988 Loss(val): 0.061926
|
|
|
+[16:15:56] Epoch 16: Loss(train): 0.060946 Loss(val): 0.061109
|
|
|
+Early stopping at 0
|
|
|
+Search 7 of 500
|
|
|
+momentum0.92, features=[96, 192, 192], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.01
|
|
|
+
|
|
|
+[16:16:01] INIT Loss(val): 0.158887
|
|
|
+[16:16:29] Epoch 2: Loss(train): 0.077085 Loss(val): 0.077593
|
|
|
+[16:16:59] Epoch 4: Loss(train): 0.068976 Loss(val): 0.070250
|
|
|
+[16:17:28] Epoch 6: Loss(train): 0.065539 Loss(val): 0.066987
|
|
|
+[16:17:58] Epoch 8: Loss(train): 0.062972 Loss(val): 0.064571
|
|
|
+[16:18:29] Epoch 10: Loss(train): 0.060879 Loss(val): 0.061406
|
|
|
+[16:18:58] Epoch 12: Loss(train): 0.060074 Loss(val): 0.060140
|
|
|
+[16:19:28] Epoch 14: Loss(train): 0.058958 Loss(val): 0.059320
|
|
|
+[16:19:58] Epoch 16: Loss(train): 0.057612 Loss(val): 0.058114
|
|
|
+[16:20:29] Epoch 18: Loss(train): 0.056968 Loss(val): 0.057745
|
|
|
+[16:20:59] Epoch 20: Loss(train): 0.056104 Loss(val): 0.056927
|
|
|
+[16:21:30] Epoch 22: Loss(train): 0.055559 Loss(val): 0.056354
|
|
|
+[16:22:20] Epoch 24: Loss(train): 0.055063 Loss(val): 0.055935
|
|
|
+[16:23:07] Epoch 26: Loss(train): 0.054734 Loss(val): 0.055537
|
|
|
+[16:23:56] Epoch 28: Loss(train): 0.054243 Loss(val): 0.055037
|
|
|
+[16:24:42] FINAL(30) Loss(val): 0.054857
|
|
|
+[16:24:45] FINAL(30) Loss(val): 0.054857
|
|
|
+
|
|
|
+Search 8 of 500
|
|
|
+momentum0.96, features=[64, 64, 64], dropout_rate=0.1
|
|
|
+kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
|
|
|
+
|
|
|
+[16:24:47] INIT Loss(val): 0.138277
|
|
|
+[16:25:30] Epoch 2: Loss(train): 0.079859 Loss(val): 0.080827
|
|
|
+[16:26:20] Epoch 4: Loss(train): 0.069111 Loss(val): 0.070549
|
|
|
+[16:27:11] Epoch 6: Loss(train): 0.065782 Loss(val): 0.067275
|
|
|
+[16:28:05] Epoch 8: Loss(train): 0.062852 Loss(val): 0.064066
|
|
|
+[16:29:03] Epoch 10: Loss(train): 0.061824 Loss(val): 0.061692
|
|
|
+[16:29:56] Epoch 12: Loss(train): 0.061533 Loss(val): 0.060959
|
|
|
+[16:30:49] Epoch 14: Loss(train): 0.060054 Loss(val): 0.059820
|
|
|
+[16:31:44] Epoch 16: Loss(train): 0.058679 Loss(val): 0.058628
|
|
|
+[16:32:37] Epoch 18: Loss(train): 0.057629 Loss(val): 0.057877
|
|
|
+[16:33:29] Epoch 20: Loss(train): 0.056418 Loss(val): 0.056854
|
|
|
+[16:34:21] Epoch 22: Loss(train): 0.056054 Loss(val): 0.056538
|
|
|
+[16:35:13] Epoch 24: Loss(train): 0.055056 Loss(val): 0.055656
|
|
|
+[16:36:01] Epoch 26: Loss(train): 0.054567 Loss(val): 0.055133
|
|
|
+[16:36:50] Epoch 28: Loss(train): 0.053922 Loss(val): 0.054542
|
|
|
+[16:37:37] FINAL(30) Loss(val): 0.053926
|
|
|
+[16:37:42] FINAL(30) Loss(val): 0.053926
|
|
|
+
|
|
|
+Search 9 of 500
|
|
|
+momentum0.9, features=[32, 64, 128], dropout_rate=0.3
|
|
|
+kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
|
|
|
+
|
|
|
+[16:37:43] INIT Loss(val): 0.149463
|
|
|
+[16:38:18] Epoch 2: Loss(train): 0.076049 Loss(val): 0.076722
|
|
|
+[16:39:03] Epoch 4: Loss(train): 0.068973 Loss(val): 0.069592
|
|
|
+[16:39:53] Epoch 6: Loss(train): 0.065072 Loss(val): 0.066030
|
|
|
+[16:40:37] Epoch 8: Loss(train): 0.063404 Loss(val): 0.064415
|