""" Author: Sebastian Vendt, University of Ulm """ using ArgParse s = ArgParseSettings() @add_arg_table s begin "--gpu" help = "set, if you want to train on the GPU" action = :store_true "--eval" help = "set, if you want to validate instead of test after training" action = :store_true "--learn" help = "learning rate" arg_type = Float32 default = 0.1f0 "--epochs" help = "Number of epochs" arg_type = Int64 default = 100 "--logmsg" help = "additional message describing the training log" arg_type = String default = "" "--csv" help = "set, if you additionally want a csv output of the learning process" action = :store_true end parsed_args = parse_args(ARGS, s) using Flux, Statistics using Flux: onecold using BSON using Dates using Printf using NNlib using FeedbackNets include("./dataManager.jl") include("./verbose.jl") using .dataManager: make_batch using .verbose using Logging import LinearAlgebra: norm norm(x::TrackedArray{T}) where T = sqrt(sum(abs2.(x)) + eps(T)) ###################### # PARAMETERS ###################### const batch_size = 100 const momentum = 0.9f0 const lambda = 0.0005f0 learning_rate = parsed_args["learn"] validate = parsed_args["eval"] const epochs = parsed_args["epochs"] const decay_rate = 0.1f0 const decay_step = 40 const usegpu = parsed_args["gpu"] const printout_interval = 5 const save_interval = 25 const time_format = "HH:MM:SS" const date_format = "dd_mm_yyyy" data_size = (60, 6) # resulting in a 300ms frame # ARCHITECTURE channels = 1 features1 = 32 features2 = 64 features3 = 128 # needs to find the relation between the axis which represents the screen position kernel1 = (3,1) # convolute only horizontally kernel2 = kernel1 # same here kernel3 = (3, 6) # this should convolute all 6 rows together to map relations between the channels pooldims1 = (2,1)# (30,6) pooldims2 = (2,1)# (15,6) # pooldims3 = (2,1)# (1, 4) inputDense1 = 1664 # prod(data_size .÷ pooldims1 .÷ pooldims2 .÷ kernel3) * features3 inputDense2 = 600 inputDense3 = 300 dropout_rate = 0.3f0 dataset_folderpath = "../MATLAB/TrainingData/" dataset_name = "2019_09_09_1658" const model_save_location = "../trainedModels/" const log_save_location = "./logs/" if usegpu using CuArrays end debug_str = "" log_msg = parsed_args["logmsg"] csv_out = parsed_args["csv"] @debug begin global debug_str debug_str = "DEBUG_" "------DEBUGGING ACTIVATED------" end io = nothing io_csv = nothing function adapt_learnrate(epoch_idx) return learning_rate * decay_rate^(epoch_idx / decay_step) end function loss(x, y) # quadratic euclidean distance + parameternorm return Flux.mse(model(x), y) + lambda * sum(norm, params(model)) end function loss(dataset) loss_val = 0.0f0 for (data, labels) in dataset loss_val += Tracker.data(loss(data, labels)) end return loss_val / length(dataset) end function load_dataset() train = make_batch(dataset_folderpath, "$(dataset_name)_TRAIN.mat", normalize_data=false, truncate_data=false) val = make_batch(dataset_folderpath, "$(dataset_name)_VAL.mat", normalize_data=false, truncate_data=false) test = make_batch(dataset_folderpath, "$(dataset_name)_TEST.mat", normalize_data=false, truncate_data=false) return (train, val, test) end model = Chain( Conv(kernel1, channels=>features1, relu, pad=map(x -> x ÷ 2, kernel1)), MaxPool(pooldims1, stride=pooldims1), Conv(kernel2, features1=>features2, relu, pad=map(x -> x ÷ 2, kernel2)), MaxPool(pooldims2, stride=pooldims2), Conv(kernel3, features2=>features3, relu), # MaxPool(), flatten, Dense(inputDense1, inputDense2, relu), Dropout(dropout_rate), Dense(inputDense2, inputDense3, relu), Dropout(dropout_rate), Dense(inputDense3, 2, σ), # coordinates between 0 and 1 ) function log(epoch, use_testset) Flux.testmode!(model, true) if(epoch == 0 | epoch == epochs) # evalutation phase if(use_testset) @printf(io, "[%s] Epoch %3d: Loss(test): %f\n", Dates.format(now(), time_format), epoch, loss(test_set)) else @printf(io, "[%s] Epoch %3d: Loss(val): %f\n", Dates.format(now(), time_format), epoch, loss(validation_set)) end else # learning phase @printf(io, "[%s] Epoch %3d: Loss(train): %f\n", Dates.format(now(), time_format), epoch, loss(train_set)) end if(csv_out) @printf(io_csv, "%d, %f\n", epoch, loss(train_set)) end Flux.testmode!(model, false) end function train_model() opt = Momentum(learning_rate, momentum) log(0, !validate) for i in 1:epochs flush(io) Flux.testmode!(model, false) # bring model in training mode Flux.train!(loss, params(model), train_set, opt) opt.eta = adapt_learnrate(i) if (rem(i, printout_interval) == 0) log(i, false) end end log(epochs, !validate) end # logging framework fp = "$(log_save_location)$(debug_str)log_$(Dates.format(now(), date_format)).log" io = open(fp, "a+") global_logger(SimpleLogger(io)) # for debug outputs @printf(Base.stdout, "Logging to File: %s\n", fp) @printf(io, "\n--------[%s %s]--------\n", Dates.format(now(), date_format), Dates.format(now(), time_format)) @printf(io, "%s\n", log_msg) # csv handling if (csv_out) fp_csv = "$(log_save_location)$(debug_str)csv_$(Dates.format(now(), date_format)).csv" io_csv = open(fp_csv, "w+") # read, write, create, truncate @printf(io_csv, "epoch, loss(train)\n") end # dump configuration @debug begin for symbol in names(Main) var = "$(symbol) = $(eval(symbol))" @printf(io, "%s\n", var) end "--------End of VAR DUMP--------" end flush(io) flush(Base.stdout) train, validation, test = load_dataset() if (usegpu) train_set = gpu.(train) validation_set = gpu.(validation) test_set = gpu.(test) model = gpu(model) end train_model()