""" Author: Sebastian Vendt, University of Ulm """ using ArgParse s = ArgParseSettings() @add_arg_table s begin "--gpu" help = "set, if you want to train on the GPU" action = :store_true "--eval" help = "set, if you want to validate instead of test after training" action = :store_true "--epochs" help = "Number of epochs" arg_type = Int64 default = 30 "--logmsg" help = "additional message describing the training log" arg_type = String default = "" "--csv" help = "set, if you additionally want a csv output of the learning process" action = :store_true "--runD" help = "set, if you want to run the default config" action = :store_true end parsed_args = parse_args(ARGS, s) using Flux, Statistics using Flux: onecold using BSON using Dates using Printf using NNlib using FeedbackNets include("./dataManager.jl") include("./verbose.jl") using .dataManager: make_batch using .verbose using Logging using Random import LinearAlgebra: norm norm(x::TrackedArray{T}) where T = sqrt(sum(abs2.(x)) + eps(T)) ###################### # PARAMETERS ###################### const batch_size = 100 momentum = 0.9f0 const lambda = 0.0005f0 const delta = 0.00001 learning_rate = 0.1f0 validate = parsed_args["eval"] const epochs = parsed_args["epochs"] const decay_rate = 0.1f0 const decay_step = 40 const usegpu = parsed_args["gpu"] const printout_interval = 2 const time_format = "HH:MM:SS" const date_format = "dd_mm_yyyy" data_size = (60, 6) # resulting in a 300ms frame # DEFAULT ARCHITECTURE channels = 1 features = [32, 64, 128] # needs to find the relation between the axis which represents the screen position kernel = [(3,1), (3,1), (3,6)] # convolute only horizontally, last should convolute all 6 rows together to map relations between the channels pooldims = [(2,1), (2,1)]# (30,6) -> (15,6) inputDense = [1664, 600, 300] # prod(data_size .÷ pooldims1 .÷ pooldims2 .÷ kernel3) * features3 dropout_rate = 0.3f0 # random search values rs_momentum = [0.9, 0.92, 0.94, 0.96, 0.98] rs_features = [[32, 64, 128], [64, 64, 64], [32, 32, 32], [96, 192, 192]] rs_dropout_rate = [0.1, 0.3, 0.4, 0.6, 0.8] rs_kernel = [[(3,1), (3,1), (3,6)], [(5,1), (5,1), (3,6)], [(7,1), (7,1), (3,6)], [(3,1), (3,1), (2,6)], [(5,1), (5,1), (2,6)], [(7,1), (7,1), (2,6)], [(7,1), (5,1), (2,6)], [(7,1), (5,1), (3,6)], [(5,1), (3,1), (2,6)], [(5,1), (3,1), (3,6)]] rs_pooldims = [[(2,1), (2,1)], [(3,1), (3,1)]] rs_learning_rate = [1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001] dataset_folderpath = "../MATLAB/TrainingData/" dataset_name = "2019_09_09_1658" const model_save_location = "../trainedModels/" const log_save_location = "./logs/" if usegpu using CuArrays end debug_str = "" log_msg = parsed_args["logmsg"] csv_out = parsed_args["csv"] runD = parsed_args["runD"] @debug begin global debug_str debug_str = "DEBUG_" "------DEBUGGING ACTIVATED------" end io = nothing io_csv = nothing function adapt_learnrate(epoch_idx) return learning_rate * decay_rate^(epoch_idx / decay_step) end function loss(model, x, y) # quadratic euclidean distance + parameternorm return Flux.mse(model(x), y) + lambda * sum(norm, params(model)) end function loss(model, dataset) loss_val = 0.0f0 for (data, labels) in dataset loss_val += Tracker.data(loss(model, data, labels)) end return loss_val / length(dataset) end function load_dataset() train = make_batch(dataset_folderpath, "$(dataset_name)_TRAIN.mat", normalize_data=false, truncate_data=false) val = make_batch(dataset_folderpath, "$(dataset_name)_VAL.mat", normalize_data=false, truncate_data=false) test = make_batch(dataset_folderpath, "$(dataset_name)_TEST.mat", normalize_data=false, truncate_data=false) return (train, val, test) end function create_model() return Chain( Conv(kernel[1], channels=>features[1], relu, pad=map(x -> x ÷ 2, kernel[1])), MaxPool(pooldims[1], stride=pooldims[1]), Conv(kernel[2], features[1]=>features[2], relu, pad=map(x -> x ÷ 2, kernel[2])), MaxPool(pooldims[2], stride=pooldims[2]), Conv(kernel[3], features[2]=>features[3], relu), # MaxPool(), flatten, Dense(inputDense[1], inputDense[2], relu), Dropout(dropout_rate), Dense(inputDense[2], inputDense[3], relu), Dropout(dropout_rate), Dense(inputDense[3], 2, σ), # coordinates between 0 and 1 ) end function log(model, epoch, use_testset) Flux.testmode!(model, true) if(epoch == 0) # evalutation phase if(use_testset) @printf(io, "[%s] INIT Loss(test): %f\n", Dates.format(now(), time_format), loss(model, test_set)) else @printf(io, "[%s] INIT Loss(val): %f\n", Dates.format(now(), time_format), loss(model, validation_set)) end elseif(epoch == epochs) @printf(io, "[%s] Epoch %3d: Loss(train): %f Loss(val): %f\n", Dates.format(now(), time_format), epoch, loss(model, train_set), loss(model, validation_set)) if(use_testset) @printf(io, "[%s] FINAL(%d) Loss(test): %f\n", Dates.format(now(), time_format), epoch, loss(model, test_set)) else @printf(io, "[%s] FINAL(%d) Loss(val): %f\n", Dates.format(now(), time_format), epoch, loss(model, validation_set)) end else # learning phase if (rem(epoch, printout_interval) == 0) @printf(io, "[%s] Epoch %3d: Loss(train): %f Loss(val): %f\n", Dates.format(now(), time_format), epoch, loss(model, train_set), loss(model, validation_set)) end end Flux.testmode!(model, false) end function log_csv(model, epoch) Flux.testmode!(model, true) if(csv_out) @printf(io_csv, "%d, %f, %f\n", epoch, loss(model, train_set), loss(model, validation_set)) end Flux.testmode!(model, false) end function train_model() model = create_model() if (usegpu) model = gpu(model) end opt = Momentum(learning_rate, momentum) log(model, 0, !validate) Flux.testmode!(model, false) # bring model in training mode last_loss = loss(model, train_set) for i in 1:epochs flush(io) Flux.train!((x, y) -> loss(model, x, y), params(model), train_set, opt) opt.eta = adapt_learnrate(i) log_csv(model, i) log(model, i, !validate) # early stopping curr_loss = loss(model, train_set) if(abs(last_loss - curr_loss) < delta) @printf(io, "Early stopping with %f at %d", curr_loss, i) Flux.testmode!(model, true) if (validate) return loss(model, validation_set) else return loss(model, test_set) end end last_loss = curr_loss end Flux.testmode!(model, true) if (validate) return loss(model, validation_set) else return loss(model, test_set) end end function random_search() rng = MersenneTwister() for search in 1:500 # create random set momentum = rand(rng, rs_momentum) features = rand(rng, rs_features) dropout_rate = rand(rng, rs_dropout_rate) kernel = rand(rng, rs_kernel) pooldims = rand(rng, rs_pooldims) learning_rate = rand(rng, rs_learning_rate) # printf configuration config1 = "momentum$(momentum), features=$(features), dropout_rate=$(dropout_rate)" config2 = "kernel=$(kernel), pooldims=$(pooldims), learning_rate=$(learning_rate)" @printf(io, "\nSearch %d of %d\n", search, 500) @printf(io, "%s\n", config1) @printf(io, "%s\n\n", config2) train_model() end end # logging framework fp = "$(log_save_location)$(debug_str)log_$(Dates.format(now(), date_format)).log" io = open(fp, "a+") global_logger(SimpleLogger(io)) # for debug outputs @printf(Base.stdout, "Logging to File: %s\n", fp) @printf(io, "\n--------[%s %s]--------\n", Dates.format(now(), date_format), Dates.format(now(), time_format)) @printf(io, "%s\n", log_msg) # csv handling if (csv_out) fp_csv = "$(log_save_location)$(debug_str)csv_$(Dates.format(now(), date_format)).csv" io_csv = open(fp_csv, "w+") # read, write, create, truncate @printf(io_csv, "epoch, loss(train), loss(val)\n") end # dump configuration @debug begin for symbol in names(Main) var = "$(symbol) = $(eval(symbol))" @printf(io, "%s\n", var) end "--------End of VAR DUMP--------" end flush(io) flush(Base.stdout) train, validation, test = load_dataset() if (usegpu) const train_set = gpu.(train) const validation_set = gpu.(validation) const test_set = gpu.(test) end if(!runD) random_search() else train_model() end