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Abstract

This work investigates the correlation between motion data from smartphone sen-
sors and user input on the touch screen. Therefore a data acquisition app is devel-
oped and a convolutional neural network is trained on the generated dataset. The
performance of the network is tested on a number pad with 12 buttons.
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1 Introduction

Today’s smartphones play with their high computing capacity and various sensors
an important role in our daily life. They are an essential part in Communication,
banking or sporting to name a few applications. Thus they combine a huge amount
of highly private information on a single end.

This work targets the user input on the touch screen as one of the most sensitive
data. It exploits several motion sensors, which are highly accurate nowadays and in-
vestigates the correlation between user input and the movement of the smartphone.
When tapping on the screen to input data (e.g. on a soft keyboard or number pad)
the phone slightly tilts every time a finger touches the screen. This rotation depends
on the position of the tap. A convolutional neural network is trained and evaluated
if the motion data from tapping on different locations can be separated well enough
to infer the user input with significant accuracy.



2 Related work

Only few paper about inferring tap locations from motion data were published so far.
They all have in common that they use hand-crafted features which were fed into
a classifier (e.g. SVM, Random Forest, MLP) [1, 2, 5, 6, 8, 9]. They also directly
predict a mapped button rather than general coordinates. Owusu et al. only uses
data from the accelerometer, Cai and Chen only uses the device orientation data
and Xu, Bai, and Zhu as well as Shen et al. combine the accelerometer and the ori-
entation data. Since the device orientation sensor became deprecated in Android
2.2 (APl level 8)[10] the gyroscope together with the accelerometer was used in this
work. Although gyroscopes are more suitable for high frequency rotations and ac-
celerometers for low frequency rotations, both contain information about the current
movement. So both sensors were included as in the publication of Miluzzo et al.
This project introduces the use of deep convolutional neural networks which hasn’t
been investigated before. It also approaches the idea of inferring keystrokes from
motion data in a more general way by predicting screen coordinates. In a second
step these coordinates can be mapped to any interface of your choice. The process
of manually selecting features was skipped as Chen and Xue did it in their research.
The paper is closely related and estimates human activities from motion data[3]. To
reduce complexity and since most of the user input happens on soft keyboards this
project’s investigation is limited to the lower half of the screen.



3 Technical Background and
feasibility

This chapter describes the technical background making this approach possible.
Secondly the initial feasibility analyze of this project is documented.

Both sensors measure in a three-dimensional coordinate system that is defined
relative to the device’s screen. The horizontal X axis points to the right, the verti-
cal Y axis points upwards while the Z axis points toward the outside of the screen
face[10]. This is depicted in figure 3.1. Three distinct movements of the phone ex-
ist. Those have three corresponding screen positions (A, B and C in fig. 3.1). All
other movements from different locations are a (attenuated) combination of those
movements. The Graphs in Figure 3.2 show the sensor readings from tapping on
the right and left side of the screen (A and B). The traces were averaged across 10
taps. Comparing the two plots it can be seen that they are well distinguishable from
each other. Especially the trace of the Y axis reflects the inverted movement of the
phone between tapping on the left or the right side. Similar distinguishable prop-
erties can be found in the traces of the accelerometer which are in the appendix
together with the remaining plot of the gyroscope from position C.
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Figure 3.1: Coordinate system relative to the device’s screen
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Figure 3.2: Averaged motion stream of the gyroscope from tapping on two positions
Aand B



4 Data acquisition

This chapters covers the process of acquiring the necessary data for training and
evaluating the neural network. While many public image datasets are available, only
few datasets of motion sensors like accelerometers and gyroscopes exist. Most of
these datasets are used in human activity recognition research and cannot be used
for the investigation at hand. This required the generation of a custom tailored
dataset specific for this study. Therefore an android application, in the following
called app, was developed to record data from the sensors as well as the tap loca-
tions on the screen. The saved data from the application is then preprocessed by a
Matlab script for further use.

To characterize the dataset one needs to be able to make some statements ac-
cording to the speed and the strength of the tapping. Thus histograms of the dis-
tribution of the absolute maximum of each frame of each sensor and each axis are
generated. The distribution of the duration of touch events, describing the speed
of tapping, is plotted together with the distribution of the time between two touch
events. One will find negative values in the latter one which is the result of overlap-
ping touch events (e.g. while the first finger hasn’t been lifted a second one touches
the screen). If further datasets will be generated these are the criteria to compare
those.

4.1 Android application development

The general purpose and the requirements for the app are described in the follow-
ing. The main task is recording the data from both motion sensors and the corre-
sponding tap location. Furthermore it should provide feedback of already tapped
locations in some form of a heat map. This is necessary so the taps are evenly
distributed across the whole area. It should provide the number of already recorded
taps as well as the possibility to pause and resume the data acquisition. Times-
tamps of the taps should be recorded so the additional information as described in
chapter 4 can be extracted from the dataset.

The requirements described above are implemented in the app called motionLog-
ger. It consists of two interfaces shown in 4.1. It was developed using android



4 Data acquisition

studio! from Google Inc. The app saves the recorded data to a CSV2-file with
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Figure 4.1: User interface of motionLogger

13 columns. (A list and description of all columns can be found in the appendix in

Fig. A.1) For measuring rotation of the device the sensor TYPE_GYROSCOPE was

used. ltis a three-dimensional vector representing the rate of rotation around the ev-

ery axis in rad/s. For measuring acceleration the sensor TYPE_LINEAR_ACCELERATION
was used. It is a three-dimensional vector as well, representing acceleration along

each device axis, excluding gravity.

4.2 Matlab preprocessing

The files generated from the android app are further processed in Matlab. The con-
tinuous stream of sensor events is separated into windows with fixed length. Each
window is located around the beginning of a tap event (pointer_down event) and
one window includes 60 samples of each sensor and each axis. 28 samples lie
before and 31 after the pointer_down event. These values were chosen by hand

'https://developer.android.com/studio
2Comma separated values



4 Data acquisition

using plots of the sensor data. The window size is large enough to cover short as
well as long tap events. It is also short enough to only fully include the movement
of a single tap. The frames can overlap if two touch events were lying close enough
together.

Since the raw data had to be generated by hand, a form of data augmentation
was used to enlarge the generated dataset. When slicing the sensor stream into
windows the anchor of the window was shifted by ten samples in both directions,
resulting in 21 frames for one touch event. This also makes the network more invari-
ant to the exact location of the touch event within the window. This is an important
aspect since during the actual attack the ground truth of a pointer down event is
unknown and needs to be estimated. The feasibility of detecting tap events was
proposed in [8, 9] and will not be part of this work.

The dataset is separated into a training- (30 %), validation- (20 %) and test-set
(10 %). This separation is done before augmentation so the network has never seen
any of the validation and test data during training. Every set is saved as a .mat file
and has two fields: data and labels. Data is a three-dimensional matrix, the first two
define one frame (60x6) while the last denotes the total number of frames. Labels
is a two-dimensional matrix. The coordinates x and y are stored in the first while
the second dimension again denotes the total number of frames. The origin of the
coordinate system is shown in figure 4.2. The lower left corner has the coordinates
(1080, 980)

o] © W4 815012143

MotionLogger

2019.09_23_1243

END RECORDING

*(1080, 980)

Figure 4.2: coordinate system origin of the labels
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Figure 4.3: Distribution of the tap locations
4.3 Dataset creation

Finally one dataset was generated using the app. 3484 tap events were recorded
in six sessions of three minutes each, followed by a three minute break. After three
sessions the break was extend to six minutes. The phone, a OnePlus 2, was held
in portrait mode while sitting on a chair having both elbows placed on the arm rests.
Both thumbs were used to tap on the screen and time between to taps was kept
short. After a few a longer break was introduced. This should simulate typing words
on a soft keyboard. The final distribution of the tap locations is shown in figure 4.3.
The highest available sampling rate was used (200 Hz). Sensor events (e.g when
the value changes) are reported asynchronously from the system but since the
time between two events only differed in a few nanoseconds no further processing
was done here. After augmentation the dataset contains 73101 samples. Detailed
statistics of this dataset can be found in the appendix. Randomly picked samples
from the dataset were compared with the curves discussed in chapter 3. Similar
patterns could be found.



5 Neural network design

This chapter covers the procedure of design and optimization of the neural net-
work. It estimates normalized screen coordinates from motion data vectors with
fixed length.

Initially a general structure was defined and subsequently its hyperparameter were
evaluated in a random search. In a second step the best performing network was
selected and its learning rate and number of epochs were fine-tuned.

The network was implemented in julia’ using its neural network framework Flux?.
All networks were trained on a NVIDIA Tesla K40c GPU.

5.1 Basic architecture

To incorporate that motion data is highly correlated in the temporal domain several
convolutional layers were used to extract low- and high level features [4]. Every axis
is convolved using a 1D Convolution kernel with shape (conv1, 1) and (conv2, 1) as
in [7]. Low level features like edges and flat areas should be extracted first before
those get merged in the last convolutional layer. This has a 2D Kernel with shape
(conv3, 6) covering all 6 axis so the network learns dependencies among the X,Y
and Z dimensions of both sensors. The first two convolutions are zero-padded, fol-
lowed by a Maxpooling layer (maxpool1 and maxpool2) similar to the architecture
proposed in [3, 7]. No Maxpooling was implemented after the third convolutional
layer because | suspected loss of information. The dimension after the third convo-
lution is roughly 13x1 (depending on the used kernel sizes).

The last convolution is followed by three dense layers (dense1, dense2 and dense3)
in a pyramid structure. The second dense layer has 600 inputs, and the final layer
has 300 inputs and two outputs with sigmoid non-linearity for both normalized co-
ordinates. For all other layers RELU was used. Dropout is incorporated in the
fully-connected layers to prevent over-fitting. The described architecture is shown
in figure 5.1.

'https://julialang.org/
2https://fluxml.ai/Flux.jl/stable/
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Figure 5.1: basic network architecture

| used the mean-square-error to calculate the loss of the network:

[h 7 N Z \/ yn x (yn,y - yn,y>2 (51)

L1-regularization is included with A = 0.0005.

.
L(,y) = E@y) + 2> |w| (5.2)

w denotes the parameter vectors of the network, P the total number of parameters
and N the batch size.

Accuracy is calculated according to the future use case. The examined screen is di-
vided into 12 buttons, similar to a number pad. The networks predicted coordinates
are counted as a hit when they land within the same button as the ground truth.

10



5 Neural network design

5.2 Hyperparameter tuning

Even though the general structure described in section 5.1 is determined, many
hyperparameter exist which are subject of further evaluation. In the following all
optimized parameters with their possible configurations are listed. Due to the large
dimension of the parameter space random search was chosen. In the first round
randomly picked configurations (excluding decay step) were trained for 40 epochs.
The best performing architecture, measured by accuracy, was then trained in a
second round for 100 epochs with three decay steps and three learning rates.

1. training epochs

2. momentum rate
0.9, 0.92, 0.94, 0.96, 0.98, 0.99

3. features in each convolution layer
32|64|128, 32|32|32, 64|64|64, 96|192|192[7]

4. dropout rate
0.1,0.3,0.4,0.6,0.8

5. 1D convolution kernel conv1 and conv2
(3,1) (3,1), (5,1) (5,1), (7,1) (7,1), (7,1) (5,1), (5,1) (3,1)

6. 2D convolution kernel conv3
(2,6), (3,6)

7. pooling dimension maxpool1 and maxpool2
(2,1) (2,1), (3,1) (3,1)

8. learning rate
1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001

9. decay step?®
20, 40, 60

3used formula in the appendix

11



6 Results

In the random search 40 configurations were trained. | stopped the search quite
early although only a very small part of the parameter space was evaluated consid-
ering the limited time and since most networks converged to a similar accuracy.

Five networks scored less than 50 %, 17 networks between 50 % and 60 % and 15
networks achieved more than 60 %. The best performing network reached 65.79 %
(on the validation set). The following table 6.1 lists the five best networks and their
configurations. One can notice that the best scoring networks have highly various
architectures. The best performing network was then trained in a second round
to optimize the decay step. Also a local search around the given architecture for
the best learn rate was again conducted. The network was trained with learn rates
0.03, 0.01 and 0.003 and decay steps 20, 40 and 60 for 100 epochs. The number of
epochs were chosen by hand from several runs and is approximately the threshold
at which all networks converge. The final best accuracy is 68.22 % on the validation
set and 60.16 % on the test set. The best performing network was trained with learn
rate 0.03 and decay step 60. The learning progress is shown in figure 6.1.

acc. p features  dropout  conv kernel pooling n
65.79% 0.99 32/64/128 0.3  (5,1)(5,1)(2,6) (3,1)(3,1) 0.003
65.66% 0.96 32/64/128 0.8  (3,1)(3,1)(3,6) (3,1)(3,1) 0.03
64.96% 0.99 64|64|64 0.3  (7,1)(7,1)(3,6) (2,1)(2,1) 0.01
63.67% 0.92 32|32|32 0.1  (51)(5,1)26) (3,1)(3,1) 0.1
63.40% 0.9 96/192/192 0.6  (3,1)(3,1)(3,6) (2,1)(2,1) 0.3

Table 6.1: configurations of the best scoring networks

12
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Figure 6.1: Loss plotted over the epochs in second round of optimization
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7 Conclusion

The presented results should be handled with care. It shows that this side channel
attack using motion sensors is in principle possible but considerably more work is
necessary. Roughly 60 % accuracy on the number pad is already far beyond the
chances of a random or brute-force search. The probability of correctly inferring
a button by a random guess is, on average, only % = 8.3%. Also consider that
this is the accuracy for a correct prediction. Further work could include neighboring
buttons increasing the inference precision even more. The achieved accuracy of
this work falls within the same range as the results from the other publications.
Miluzzo et al. reaches 67.1 % but uses the whole screen and far more training data
(40.000 taps). Cai and Chen with their TouchLogger reach 71.5 % with 16 buttons in
landscape mode. The best results among the cited paper were achieved by Shen
et al. with 83.9 % on a number pad covering half the screen. They also had a very
large training set with 97.000 taps.

More time should to be invested using more datasets acquired from different people.
The network should also be tested on motion data from user input on real interfaces
rather than the app. In this work the presented way of acquiring data was chosen
because it offered a fast and easy way to implement the requirements. But it is
also a compromise because it abstracts the real use case and introduce a possible
source for misleading results. Also many more steps like the tap event detection
needs to be implemented before a full attack can be established. They all will come
with their own problems.

The optimization showed that the general network architecture independently of its
parameter performs well on the dataset. More research should be done in finding
a more suitable network structure to further increase inference accuracy. Several
ways of data normalization could be tested. Padding for the third convolution was
resigned since it would contradict with the idea that one kernel establishing a rela-
tion between the six axis but one could try padding only in the temporal domain.

14



A Appendix

A.1 Formulas

Equation A.1 shows the formula for the learning rate decay over the epochs. 7
denotes the initial learning rate, e the epoch, ¢ the new learning rate, d the decay

step and ¢ the decay rate.
€

e =nod (A.1)

A.2 Usage of the software

motionLogger The app has two interfaces shown in Figure 4.1. In the main inter-
face one can read the available sensors and start a new recording session with the
button Start. This opens a second interface for the recording. It has a tap counter
at the top followed by the name of the file, the data is written to. On the left side
two buttons are available to start and pause the recording. With End recording the
user finishes the data acquisition and returns to the main interface where some in-
formation of the last recording activity is displayed in the console. Figure 4.1 also
shows the heat map. The sensitive area is separated in light Gray from the rest
of the screen. Tapping at a certain location results in a light green rectangle. This
is added to the already existing rectangles, so the more taps are recorded at one
location the darker the color of the heat map.

The table A.1 list all columns of the CSV-File together with a description.

julia scripts The script net.jl can be run from the command line with several op-
tions. A list with all available options and additional help text can be printed with

julia net.jl --help

15
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column name description

GYRO_DIFF Time between two gyroscope events in ns
GYRO_X Rate of rotation around the x axis in rad/s
GYRO_Y Rate of rotation around the y axis in rad/s
GYRO_Z Rate of rotation around the x axis in rad/s
ACC_DIFF Time between two accelerometer events in ns
ACC_X Acceleration force along the x axis (excluding gravity) in m/s?
ACC_Y Acceleration force along the y axis (excluding gravity) in m /s>
ACC_Z Acceleration force along the z axis (excluding gravity) in m/s?
TOUCH_DOWN marks the beginning of a touch event (pointer down event)
TOUCH_X x coordinate of the tap location
TOUCH_Y vy coordinate of the tap location
ID1  Tracking ID of the first pointer

ID2 Tracking ID of the second pointer (in case of overlapping touch
events)

Table A.1: Description of the columns in the CSV-File

The script logs many important values (e.g. current loss, accuracy) to a log file
for easily monitoring the training progress. The default configuration (—runD) is the
configuration of the best performing network from chapter 6. If this flag is not set
the random search, described in 5.2, is conducted.

A.3 Plots

16
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