log_19_09_2019.log 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970
  1. --------[19_09_2019 18:04:11]--------
  2. Random Grid Search
  3. Search 1 of 500
  4. momentum0.99, features=[64, 64, 64], dropout_rate=0.6
  5. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
  6. [18:05:27] INIT Loss(val): 0.139415 Accuarcy: 0.086344
  7. [18:07:54] Epoch 2: Loss(train): 0.077418 Loss(val): 0.077792
  8. [18:08:22] Epoch 4: Loss(train): 0.068747 Loss(val): 0.069827
  9. [18:08:53] Epoch 6: Loss(train): 0.066216 Loss(val): 0.067672
  10. [18:09:24] Epoch 8: Loss(train): 0.064400 Loss(val): 0.065635
  11. [18:09:56] Epoch 10: Loss(train): 0.062374 Loss(val): 0.062887
  12. [18:10:24] Epoch 12: Loss(train): 0.062486 Loss(val): 0.061977
  13. [18:10:52] Epoch 14: Loss(train): 0.060712 Loss(val): 0.060443
  14. [18:11:20] Epoch 16: Loss(train): 0.059088 Loss(val): 0.059083
  15. [18:11:51] Epoch 18: Loss(train): 0.058101 Loss(val): 0.058331
  16. [18:12:19] Epoch 20: Loss(train): 0.057148 Loss(val): 0.057508
  17. [18:12:51] Epoch 22: Loss(train): 0.055926 Loss(val): 0.056367
  18. [18:13:19] Epoch 24: Loss(train): 0.055365 Loss(val): 0.055971
  19. [18:13:47] Epoch 26: Loss(train): 0.054611 Loss(val): 0.055201
  20. [18:14:15] Epoch 28: Loss(train): 0.053842 Loss(val): 0.054555
  21. [18:14:44] Epoch 30: Loss(train): 0.053042 Loss(val): 0.053763
  22. [18:15:19] Epoch 32: Loss(train): 0.052779 Loss(val): 0.053499
  23. [18:15:47] Epoch 34: Loss(train): 0.052054 Loss(val): 0.052898
  24. [18:16:15] Epoch 36: Loss(train): 0.051787 Loss(val): 0.052560
  25. [18:16:43] Epoch 38: Loss(train): 0.051411 Loss(val): 0.052254
  26. [18:17:11] Epoch 40: Loss(train): 0.051067 Loss(val): 0.051975
  27. [18:17:14] FINAL(40) Loss(val): 0.051975 Accuarcy: 0.638027
  28. Search 2 of 500
  29. momentum0.98, features=[64, 64, 64], dropout_rate=0.6
  30. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
  31. [18:17:28] INIT Loss(val): 0.153462 Accuarcy: 0.102959
  32. [18:17:59] Epoch 2: Loss(train): 0.075035 Loss(val): 0.075419
  33. [18:18:28] Epoch 4: Loss(train): 0.070219 Loss(val): 0.071059
  34. [18:18:56] Epoch 6: Loss(train): 0.066796 Loss(val): 0.068081
  35. [18:19:26] Epoch 8: Loss(train): 0.064382 Loss(val): 0.066310
  36. [18:19:55] Epoch 10: Loss(train): 0.062338 Loss(val): 0.063341
  37. [18:20:24] Epoch 12: Loss(train): 0.062264 Loss(val): 0.062503
  38. [18:20:52] Epoch 14: Loss(train): 0.060864 Loss(val): 0.061372
  39. [18:21:21] Epoch 16: Loss(train): 0.059382 Loss(val): 0.060050
  40. [18:21:49] Epoch 18: Loss(train): 0.058139 Loss(val): 0.058792
  41. [18:22:18] Epoch 20: Loss(train): 0.057172 Loss(val): 0.057924
  42. [18:22:48] Epoch 22: Loss(train): 0.056341 Loss(val): 0.057077
  43. [18:23:17] Epoch 24: Loss(train): 0.055905 Loss(val): 0.056701
  44. [18:23:45] Epoch 26: Loss(train): 0.055191 Loss(val): 0.056047
  45. [18:24:14] Epoch 28: Loss(train): 0.054708 Loss(val): 0.055567
  46. [18:24:43] Epoch 30: Loss(train): 0.054421 Loss(val): 0.055375
  47. [18:25:11] Epoch 32: Loss(train): 0.054032 Loss(val): 0.054960
  48. [18:25:41] Epoch 34: Loss(train): 0.053697 Loss(val): 0.054623
  49. [18:26:10] Epoch 36: Loss(train): 0.053191 Loss(val): 0.054077
  50. [18:26:39] Epoch 38: Loss(train): 0.052736 Loss(val): 0.053705
  51. [18:27:08] Epoch 40: Loss(train): 0.052341 Loss(val): 0.053276
  52. [18:27:11] FINAL(40) Loss(val): 0.053276 Accuarcy: 0.613299
  53. Search 3 of 500
  54. momentum0.94, features=[32, 64, 128], dropout_rate=0.3
  55. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=1.0
  56. [18:27:25] INIT Loss(val): 0.162784 Accuarcy: 0.093435
  57. [18:27:57] Epoch 2: Loss(train): 0.074868 Loss(val): 0.075268
  58. [18:28:26] Epoch 4: Loss(train): 0.068138 Loss(val): 0.068649
  59. [18:28:55] Epoch 6: Loss(train): 0.064977 Loss(val): 0.065487
  60. [18:29:24] Epoch 8: Loss(train): 0.063515 Loss(val): 0.063438
  61. [18:29:53] Epoch 10: Loss(train): 0.063088 Loss(val): 0.062578
  62. [18:30:22] Epoch 12: Loss(train): 0.061802 Loss(val): 0.061483
  63. [18:30:51] Epoch 14: Loss(train): 0.060184 Loss(val): 0.060016
  64. [18:31:21] Epoch 16: Loss(train): 0.058834 Loss(val): 0.058876
  65. [18:31:50] Epoch 18: Loss(train): 0.057796 Loss(val): 0.057980
  66. [18:32:19] Epoch 20: Loss(train): 0.057109 Loss(val): 0.057453
  67. [18:32:48] Epoch 22: Loss(train): 0.056280 Loss(val): 0.056685
  68. [18:33:17] Epoch 24: Loss(train): 0.055541 Loss(val): 0.055949
  69. [18:33:46] Epoch 26: Loss(train): 0.054714 Loss(val): 0.055165
  70. [18:34:15] Epoch 28: Loss(train): 0.054159 Loss(val): 0.054650
  71. [18:34:45] Epoch 30: Loss(train): 0.053510 Loss(val): 0.054028
  72. [18:35:15] Epoch 32: Loss(train): 0.053212 Loss(val): 0.053752
  73. [18:35:44] Epoch 34: Loss(train): 0.052627 Loss(val): 0.053269
  74. [18:36:14] Epoch 36: Loss(train): 0.052508 Loss(val): 0.053079
  75. [18:36:43] Epoch 38: Loss(train): 0.051985 Loss(val): 0.052550
  76. [18:37:13] Epoch 40: Loss(train): 0.051785 Loss(val): 0.052311
  77. [18:37:16] FINAL(40) Loss(val): 0.052311 Accuarcy: 0.634133
  78. Search 4 of 500
  79. momentum0.98, features=[32, 32, 32], dropout_rate=0.6
  80. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
  81. [18:37:31] INIT Loss(val): 0.134779 Accuarcy: 0.095527
  82. [18:38:04] Epoch 2: Loss(train): 0.078241 Loss(val): 0.079199
  83. [18:38:33] Epoch 4: Loss(train): 0.070412 Loss(val): 0.072017
  84. [18:39:04] Epoch 6: Loss(train): 0.066808 Loss(val): 0.068458
  85. [18:39:34] Epoch 8: Loss(train): 0.063924 Loss(val): 0.065181
  86. [18:40:05] Epoch 10: Loss(train): 0.064103 Loss(val): 0.063963
  87. [18:40:35] Epoch 12: Loss(train): 0.062526 Loss(val): 0.062825
  88. [18:41:05] Epoch 14: Loss(train): 0.060927 Loss(val): 0.061415
  89. [18:41:35] Epoch 16: Loss(train): 0.059985 Loss(val): 0.060562
  90. [18:42:05] Epoch 18: Loss(train): 0.058566 Loss(val): 0.059268
  91. [18:42:36] Epoch 20: Loss(train): 0.057687 Loss(val): 0.058355
  92. [18:43:05] Epoch 22: Loss(train): 0.056681 Loss(val): 0.057413
  93. [18:43:36] Epoch 24: Loss(train): 0.055931 Loss(val): 0.056701
  94. [18:44:07] Epoch 26: Loss(train): 0.055389 Loss(val): 0.056172
  95. [18:44:37] Epoch 28: Loss(train): 0.054791 Loss(val): 0.055668
  96. [18:45:07] Epoch 30: Loss(train): 0.054420 Loss(val): 0.055324
  97. [18:45:38] Epoch 32: Loss(train): 0.053756 Loss(val): 0.054584
  98. [18:46:09] Epoch 34: Loss(train): 0.053215 Loss(val): 0.054125
  99. [18:46:39] Epoch 36: Loss(train): 0.052708 Loss(val): 0.053595
  100. [18:47:10] Epoch 38: Loss(train): 0.052368 Loss(val): 0.053279
  101. [18:47:40] Epoch 40: Loss(train): 0.051784 Loss(val): 0.052760
  102. [18:47:44] FINAL(40) Loss(val): 0.052760 Accuarcy: 0.623980
  103. Search 5 of 500
  104. momentum0.96, features=[32, 64, 128], dropout_rate=0.8
  105. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.01
  106. [18:47:58] INIT Loss(val): 0.138354 Accuarcy: 0.100289
  107. [18:48:33] Epoch 2: Loss(train): 0.075274 Loss(val): 0.075726
  108. [18:49:04] Epoch 4: Loss(train): 0.067656 Loss(val): 0.068969
  109. [18:49:35] Epoch 6: Loss(train): 0.064109 Loss(val): 0.065550
  110. [18:50:05] Epoch 8: Loss(train): 0.062007 Loss(val): 0.063224
  111. [18:50:35] Epoch 10: Loss(train): 0.060712 Loss(val): 0.060455
  112. [18:51:06] Epoch 12: Loss(train): 0.060152 Loss(val): 0.059586
  113. [18:51:38] Epoch 14: Loss(train): 0.058922 Loss(val): 0.058455
  114. [18:52:10] Epoch 16: Loss(train): 0.057797 Loss(val): 0.057439
  115. [18:52:41] Epoch 18: Loss(train): 0.056685 Loss(val): 0.056471
  116. [18:53:11] Epoch 20: Loss(train): 0.056109 Loss(val): 0.055995
  117. [18:53:43] Epoch 22: Loss(train): 0.055229 Loss(val): 0.055187
  118. [18:54:14] Epoch 24: Loss(train): 0.054637 Loss(val): 0.054621
  119. [18:54:46] Epoch 26: Loss(train): 0.054068 Loss(val): 0.054110
  120. [18:55:17] Epoch 28: Loss(train): 0.053452 Loss(val): 0.053568
  121. [18:55:47] Epoch 30: Loss(train): 0.052814 Loss(val): 0.053036
  122. [18:56:18] Epoch 32: Loss(train): 0.052657 Loss(val): 0.052841
  123. [18:56:55] Epoch 34: Loss(train): 0.052147 Loss(val): 0.052422
  124. [18:57:28] Epoch 36: Loss(train): 0.051882 Loss(val): 0.052147
  125. [18:58:00] Epoch 38: Loss(train): 0.051624 Loss(val): 0.051983
  126. [18:58:33] Epoch 40: Loss(train): 0.051157 Loss(val): 0.051610
  127. [18:58:36] FINAL(40) Loss(val): 0.051610 Accuarcy: 0.654694
  128. Search 6 of 500
  129. momentum0.9, features=[64, 64, 64], dropout_rate=0.6
  130. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.1
  131. [18:58:51] INIT Loss(val): 0.137227 Accuarcy: 0.089082
  132. [18:59:25] Epoch 2: Loss(train): 0.076255 Loss(val): 0.077085
  133. [18:59:58] Epoch 4: Loss(train): 0.069647 Loss(val): 0.070416
  134. [19:00:30] Epoch 6: Loss(train): 0.066060 Loss(val): 0.066870
  135. [19:01:03] Epoch 8: Loss(train): 0.063875 Loss(val): 0.064680
  136. [19:01:36] Epoch 10: Loss(train): 0.061816 Loss(val): 0.062256
  137. [19:02:07] Epoch 12: Loss(train): 0.062256 Loss(val): 0.061819
  138. [19:02:39] Epoch 14: Loss(train): 0.060937 Loss(val): 0.060642
  139. [19:03:10] Epoch 16: Loss(train): 0.059295 Loss(val): 0.059192
  140. [19:03:43] Epoch 18: Loss(train): 0.058088 Loss(val): 0.058086
  141. [19:04:15] Epoch 20: Loss(train): 0.057366 Loss(val): 0.057583
  142. [19:04:48] Epoch 22: Loss(train): 0.056409 Loss(val): 0.056883
  143. [19:05:20] Epoch 24: Loss(train): 0.055725 Loss(val): 0.056264
  144. [19:05:54] Epoch 26: Loss(train): 0.055122 Loss(val): 0.055765
  145. [19:06:26] Epoch 28: Loss(train): 0.054427 Loss(val): 0.055090
  146. [19:06:58] Epoch 30: Loss(train): 0.053994 Loss(val): 0.054728
  147. [19:07:30] Epoch 32: Loss(train): 0.053254 Loss(val): 0.054063
  148. [19:08:02] Epoch 34: Loss(train): 0.052780 Loss(val): 0.053672
  149. [19:08:34] Epoch 36: Loss(train): 0.052507 Loss(val): 0.053308
  150. [19:09:06] Epoch 38: Loss(train): 0.052088 Loss(val): 0.052931
  151. [19:09:38] Epoch 40: Loss(train): 0.051752 Loss(val): 0.052681
  152. [19:09:41] FINAL(40) Loss(val): 0.052681 Accuarcy: 0.620153
  153. Search 7 of 500
  154. momentum0.96, features=[64, 64, 64], dropout_rate=0.6
  155. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
  156. [19:09:56] INIT Loss(val): 0.129805 Accuarcy: 0.096088
  157. [19:10:31] Epoch 2: Loss(train): 0.078690 Loss(val): 0.079806
  158. [19:11:03] Epoch 4: Loss(train): 0.068390 Loss(val): 0.069582
  159. [19:11:34] Epoch 6: Loss(train): 0.065949 Loss(val): 0.067527
  160. [19:12:06] Epoch 8: Loss(train): 0.063865 Loss(val): 0.065614
  161. [19:12:37] Epoch 10: Loss(train): 0.061512 Loss(val): 0.062654
  162. [19:13:09] Epoch 12: Loss(train): 0.061305 Loss(val): 0.061241
  163. [19:13:41] Epoch 14: Loss(train): 0.060556 Loss(val): 0.060605
  164. [19:14:14] Epoch 16: Loss(train): 0.059072 Loss(val): 0.059439
  165. [19:14:46] Epoch 18: Loss(train): 0.057793 Loss(val): 0.058227
  166. [19:15:19] Epoch 20: Loss(train): 0.057246 Loss(val): 0.057806
  167. [19:15:51] Epoch 22: Loss(train): 0.056266 Loss(val): 0.056918
  168. [19:16:24] Epoch 24: Loss(train): 0.055712 Loss(val): 0.056347
  169. [19:16:56] Epoch 26: Loss(train): 0.055176 Loss(val): 0.055786
  170. [19:17:28] Epoch 28: Loss(train): 0.054897 Loss(val): 0.055550
  171. [19:18:01] Epoch 30: Loss(train): 0.054363 Loss(val): 0.055041
  172. [19:18:35] Epoch 32: Loss(train): 0.053887 Loss(val): 0.054487
  173. [19:19:08] Epoch 34: Loss(train): 0.053423 Loss(val): 0.054010
  174. [19:19:41] Epoch 36: Loss(train): 0.053153 Loss(val): 0.053742
  175. [19:20:13] Epoch 38: Loss(train): 0.052864 Loss(val): 0.053482
  176. [19:20:46] Epoch 40: Loss(train): 0.052327 Loss(val): 0.052950
  177. [19:20:49] FINAL(40) Loss(val): 0.052950 Accuarcy: 0.619643
  178. Search 8 of 500
  179. momentum0.94, features=[32, 64, 128], dropout_rate=0.8
  180. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.1
  181. [19:21:05] INIT Loss(val): 0.126856 Accuarcy: 0.097840
  182. [19:21:42] Epoch 2: Loss(train): 0.076776 Loss(val): 0.077285
  183. [19:22:15] Epoch 4: Loss(train): 0.069062 Loss(val): 0.070340
  184. [19:22:48] Epoch 6: Loss(train): 0.066273 Loss(val): 0.068127
  185. [19:23:22] Epoch 8: Loss(train): 0.063386 Loss(val): 0.064870
  186. [19:23:55] Epoch 10: Loss(train): 0.062181 Loss(val): 0.061876
  187. [19:24:29] Epoch 12: Loss(train): 0.060695 Loss(val): 0.060278
  188. [19:25:03] Epoch 14: Loss(train): 0.059365 Loss(val): 0.059288
  189. [19:25:36] Epoch 16: Loss(train): 0.058426 Loss(val): 0.058403
  190. [19:26:09] Epoch 18: Loss(train): 0.057446 Loss(val): 0.057615
  191. [19:26:41] Epoch 20: Loss(train): 0.056655 Loss(val): 0.056790
  192. [19:27:15] Epoch 22: Loss(train): 0.056013 Loss(val): 0.056254
  193. [19:27:49] Epoch 24: Loss(train): 0.055537 Loss(val): 0.055781
  194. [19:28:21] Epoch 26: Loss(train): 0.055158 Loss(val): 0.055334
  195. [19:28:54] Epoch 28: Loss(train): 0.054319 Loss(val): 0.054558
  196. [19:29:27] Epoch 30: Loss(train): 0.054050 Loss(val): 0.054258
  197. [19:30:00] Epoch 32: Loss(train): 0.053499 Loss(val): 0.053745
  198. [19:30:33] Epoch 34: Loss(train): 0.053151 Loss(val): 0.053429
  199. [19:31:07] Epoch 36: Loss(train): 0.052711 Loss(val): 0.052953
  200. [19:31:40] Epoch 38: Loss(train): 0.052423 Loss(val): 0.052699
  201. [19:32:14] Epoch 40: Loss(train): 0.052046 Loss(val): 0.052357
  202. [19:32:18] FINAL(40) Loss(val): 0.052357 Accuarcy: 0.630391
  203. Search 9 of 500
  204. momentum0.94, features=[32, 32, 32], dropout_rate=0.8
  205. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
  206. [19:32:34] INIT Loss(val): 0.131642 Accuarcy: 0.090017
  207. [19:33:10] Epoch 2: Loss(train): 0.076535 Loss(val): 0.077012
  208. [19:33:44] Epoch 4: Loss(train): 0.068991 Loss(val): 0.070012
  209. [19:34:17] Epoch 6: Loss(train): 0.066681 Loss(val): 0.068178
  210. [19:34:52] Epoch 8: Loss(train): 0.063801 Loss(val): 0.065194
  211. [19:35:27] Epoch 10: Loss(train): 0.062749 Loss(val): 0.062579
  212. [19:36:03] Epoch 12: Loss(train): 0.061396 Loss(val): 0.061188
  213. [19:36:36] Epoch 14: Loss(train): 0.059828 Loss(val): 0.059840
  214. [19:37:09] Epoch 16: Loss(train): 0.058267 Loss(val): 0.058412
  215. [19:37:42] Epoch 18: Loss(train): 0.056997 Loss(val): 0.057319
  216. [19:38:17] Epoch 20: Loss(train): 0.056212 Loss(val): 0.056592
  217. [19:38:51] Epoch 22: Loss(train): 0.055699 Loss(val): 0.056120
  218. [19:39:25] Epoch 24: Loss(train): 0.055265 Loss(val): 0.055732
  219. [19:40:00] Epoch 26: Loss(train): 0.054956 Loss(val): 0.055544
  220. [19:40:35] Epoch 28: Loss(train): 0.054316 Loss(val): 0.054904
  221. [19:41:09] Epoch 30: Loss(train): 0.053904 Loss(val): 0.054533
  222. [19:41:42] Epoch 32: Loss(train): 0.053655 Loss(val): 0.054287
  223. [19:42:16] Epoch 34: Loss(train): 0.053000 Loss(val): 0.053676
  224. [19:42:50] Epoch 36: Loss(train): 0.052240 Loss(val): 0.053027
  225. [19:43:24] Epoch 38: Loss(train): 0.051914 Loss(val): 0.052626
  226. [19:43:59] Epoch 40: Loss(train): 0.051464 Loss(val): 0.052201
  227. [19:44:02] FINAL(40) Loss(val): 0.052201 Accuarcy: 0.634864
  228. Search 10 of 500
  229. momentum0.94, features=[32, 32, 32], dropout_rate=0.3
  230. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.3
  231. [19:44:18] INIT Loss(val): 0.147838 Accuarcy: 0.096224
  232. [19:44:56] Epoch 2: Loss(train): 0.073673 Loss(val): 0.074037
  233. [19:45:29] Epoch 4: Loss(train): 0.066077 Loss(val): 0.066764
  234. [19:46:04] Epoch 6: Loss(train): 0.063749 Loss(val): 0.064495
  235. [19:46:39] Epoch 8: Loss(train): 0.061897 Loss(val): 0.062830
  236. [19:47:13] Epoch 10: Loss(train): 0.059758 Loss(val): 0.059846
  237. [19:47:47] Epoch 12: Loss(train): 0.060317 Loss(val): 0.059947
  238. [19:48:20] Epoch 14: Loss(train): 0.059522 Loss(val): 0.059213
  239. [19:48:55] Epoch 16: Loss(train): 0.058307 Loss(val): 0.058215
  240. [19:49:29] Epoch 18: Loss(train): 0.057684 Loss(val): 0.057823
  241. [19:50:03] Epoch 20: Loss(train): 0.056430 Loss(val): 0.056712
  242. [19:50:37] Epoch 22: Loss(train): 0.055679 Loss(val): 0.056159
  243. [19:51:12] Epoch 24: Loss(train): 0.055052 Loss(val): 0.055606
  244. [19:51:53] Epoch 26: Loss(train): 0.054097 Loss(val): 0.054759
  245. [19:52:54] Epoch 28: Loss(train): 0.053659 Loss(val): 0.054303
  246. [19:53:57] Epoch 30: Loss(train): 0.053202 Loss(val): 0.053859
  247. [19:55:01] Epoch 32: Loss(train): 0.052676 Loss(val): 0.053317
  248. [19:56:05] Epoch 34: Loss(train): 0.052394 Loss(val): 0.053083
  249. [19:57:09] Epoch 36: Loss(train): 0.051938 Loss(val): 0.052596
  250. [19:58:14] Epoch 38: Loss(train): 0.051952 Loss(val): 0.052589
  251. [19:59:18] Epoch 40: Loss(train): 0.051624 Loss(val): 0.052260
  252. [19:59:27] FINAL(40) Loss(val): 0.052260 Accuarcy: 0.640425
  253. Search 11 of 500
  254. momentum0.94, features=[32, 64, 128], dropout_rate=0.8
  255. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
  256. [20:00:05] INIT Loss(val): 0.128097 Accuarcy: 0.100561
  257. [20:01:16] Epoch 2: Loss(train): 0.076811 Loss(val): 0.077396
  258. [20:02:46] Epoch 4: Loss(train): 0.067419 Loss(val): 0.068027
  259. [20:03:52] Epoch 6: Loss(train): 0.064314 Loss(val): 0.064847
  260. [20:05:02] Epoch 8: Loss(train): 0.062622 Loss(val): 0.063239
  261. [20:06:05] Epoch 10: Loss(train): 0.062587 Loss(val): 0.061918
  262. [20:07:18] Epoch 12: Loss(train): 0.062067 Loss(val): 0.061365
  263. [20:08:35] Epoch 14: Loss(train): 0.060435 Loss(val): 0.059998
  264. [20:09:40] Epoch 16: Loss(train): 0.059291 Loss(val): 0.059136
  265. [20:10:47] Epoch 18: Loss(train): 0.058127 Loss(val): 0.058230
  266. [20:11:56] Epoch 20: Loss(train): 0.057044 Loss(val): 0.057275
  267. [20:13:07] Epoch 22: Loss(train): 0.056308 Loss(val): 0.056648
  268. [20:14:12] Epoch 24: Loss(train): 0.055546 Loss(val): 0.055942
  269. [20:15:17] Epoch 26: Loss(train): 0.054920 Loss(val): 0.055446
  270. [20:16:23] Epoch 28: Loss(train): 0.054230 Loss(val): 0.054767
  271. [20:17:29] Epoch 30: Loss(train): 0.053606 Loss(val): 0.054120
  272. [20:18:38] Epoch 32: Loss(train): 0.053080 Loss(val): 0.053653
  273. [20:19:46] Epoch 34: Loss(train): 0.052750 Loss(val): 0.053295
  274. [20:20:56] Epoch 36: Loss(train): 0.052336 Loss(val): 0.052997
  275. [20:22:03] Epoch 38: Loss(train): 0.052112 Loss(val): 0.052736
  276. [20:23:12] Epoch 40: Loss(train): 0.051778 Loss(val): 0.052454
  277. [20:23:21] FINAL(40) Loss(val): 0.052454 Accuarcy: 0.635867
  278. Search 12 of 500
  279. momentum0.98, features=[64, 64, 64], dropout_rate=0.4
  280. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
  281. [20:24:00] INIT Loss(val): 0.148256 Accuarcy: 0.087296
  282. [20:25:12] Epoch 2: Loss(train): 0.079662 Loss(val): 0.080293
  283. [20:26:18] Epoch 4: Loss(train): 0.070002 Loss(val): 0.070702
  284. [20:27:29] Epoch 6: Loss(train): 0.067117 Loss(val): 0.068561
  285. [20:28:37] Epoch 8: Loss(train): 0.064559 Loss(val): 0.066135
  286. [20:29:44] Epoch 10: Loss(train): 0.062571 Loss(val): 0.062898
  287. [20:30:51] Epoch 12: Loss(train): 0.061983 Loss(val): 0.062073
  288. [20:31:58] Epoch 14: Loss(train): 0.060905 Loss(val): 0.061123
  289. [20:33:04] Epoch 16: Loss(train): 0.059509 Loss(val): 0.059778
  290. [20:34:11] Epoch 18: Loss(train): 0.058631 Loss(val): 0.058973
  291. [20:35:21] Epoch 20: Loss(train): 0.057901 Loss(val): 0.058287
  292. [20:36:31] Epoch 22: Loss(train): 0.057311 Loss(val): 0.057726
  293. [20:37:40] Epoch 24: Loss(train): 0.056381 Loss(val): 0.056801
  294. [20:38:48] Epoch 26: Loss(train): 0.055594 Loss(val): 0.056158
  295. [20:39:55] Epoch 28: Loss(train): 0.055280 Loss(val): 0.055773
  296. [20:41:04] Epoch 30: Loss(train): 0.054724 Loss(val): 0.055232
  297. [20:42:15] Epoch 32: Loss(train): 0.054286 Loss(val): 0.054696
  298. [20:43:23] Epoch 34: Loss(train): 0.054172 Loss(val): 0.054566
  299. [20:44:34] Epoch 36: Loss(train): 0.053554 Loss(val): 0.053958
  300. [20:45:45] Epoch 38: Loss(train): 0.053425 Loss(val): 0.053765
  301. Early stopping with Loss(train) 0.054845 at epoch 38 (Accuracy: 0.584490)
  302. Search 13 of 500
  303. momentum0.99, features=[32, 32, 32], dropout_rate=0.4
  304. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
  305. [20:46:34] INIT Loss(val): 0.140461 Accuarcy: 0.104388
  306. [20:47:52] Epoch 2: Loss(train): 0.076866 Loss(val): 0.076988
  307. [20:49:05] Epoch 4: Loss(train): 0.068130 Loss(val): 0.069167
  308. [20:50:14] Epoch 6: Loss(train): 0.064605 Loss(val): 0.065783
  309. [20:51:26] Epoch 8: Loss(train): 0.062285 Loss(val): 0.063043
  310. [20:52:39] Epoch 10: Loss(train): 0.061567 Loss(val): 0.061103
  311. [20:53:52] Epoch 12: Loss(train): 0.060784 Loss(val): 0.060254
  312. [20:55:15] Epoch 14: Loss(train): 0.059443 Loss(val): 0.059142
  313. [20:56:25] Epoch 16: Loss(train): 0.058249 Loss(val): 0.058051
  314. [20:57:36] Epoch 18: Loss(train): 0.057259 Loss(val): 0.057268
  315. [20:58:51] Epoch 20: Loss(train): 0.056265 Loss(val): 0.056417
  316. [21:00:38] Epoch 22: Loss(train): 0.055420 Loss(val): 0.055663
  317. [21:02:37] Epoch 24: Loss(train): 0.054498 Loss(val): 0.054781
  318. [21:04:27] Epoch 26: Loss(train): 0.054194 Loss(val): 0.054544
  319. [21:06:17] Epoch 28: Loss(train): 0.053792 Loss(val): 0.054235
  320. [21:07:45] Epoch 30: Loss(train): 0.053412 Loss(val): 0.053891
  321. [21:09:00] Epoch 32: Loss(train): 0.052879 Loss(val): 0.053408
  322. [21:10:13] Epoch 34: Loss(train): 0.052690 Loss(val): 0.053264
  323. [21:11:49] Epoch 36: Loss(train): 0.052348 Loss(val): 0.052886
  324. [21:13:17] Epoch 38: Loss(train): 0.052192 Loss(val): 0.052790
  325. [21:14:31] Epoch 40: Loss(train): 0.051947 Loss(val): 0.052624
  326. [21:14:41] FINAL(40) Loss(val): 0.052624 Accuarcy: 0.635612
  327. Search 14 of 500
  328. momentum0.94, features=[64, 64, 64], dropout_rate=0.3
  329. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
  330. [21:15:24] INIT Loss(val): 0.140948 Accuarcy: 0.090221
  331. [21:16:49] Epoch 2: Loss(train): 0.073946 Loss(val): 0.074002
  332. [21:18:12] Epoch 4: Loss(train): 0.067837 Loss(val): 0.068280
  333. [21:19:25] Epoch 6: Loss(train): 0.065246 Loss(val): 0.066273
  334. [21:20:41] Epoch 8: Loss(train): 0.062865 Loss(val): 0.064018
  335. [21:21:56] Epoch 10: Loss(train): 0.060457 Loss(val): 0.061356
  336. [21:23:07] Epoch 12: Loss(train): 0.060426 Loss(val): 0.060503
  337. [21:24:19] Epoch 14: Loss(train): 0.059488 Loss(val): 0.059690
  338. [21:25:30] Epoch 16: Loss(train): 0.058704 Loss(val): 0.059006
  339. [21:26:42] Epoch 18: Loss(train): 0.057890 Loss(val): 0.058259
  340. [21:27:56] Epoch 20: Loss(train): 0.056893 Loss(val): 0.057368
  341. [21:29:09] Epoch 22: Loss(train): 0.056089 Loss(val): 0.056659
  342. [21:30:30] Epoch 24: Loss(train): 0.055805 Loss(val): 0.056313
  343. [21:32:29] Epoch 26: Loss(train): 0.055030 Loss(val): 0.055562
  344. [21:34:07] Epoch 28: Loss(train): 0.054475 Loss(val): 0.055053
  345. [21:35:34] Epoch 30: Loss(train): 0.053939 Loss(val): 0.054514
  346. [21:37:03] Epoch 32: Loss(train): 0.053544 Loss(val): 0.054175
  347. [21:38:43] Epoch 34: Loss(train): 0.053206 Loss(val): 0.053755
  348. [21:40:20] Epoch 36: Loss(train): 0.052790 Loss(val): 0.053353
  349. [21:41:49] Epoch 38: Loss(train): 0.052477 Loss(val): 0.053059
  350. [21:43:08] Epoch 40: Loss(train): 0.052117 Loss(val): 0.052704
  351. [21:43:19] FINAL(40) Loss(val): 0.052704 Accuarcy: 0.630085
  352. Search 15 of 500
  353. momentum0.98, features=[96, 192, 192], dropout_rate=0.6
  354. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=1.0
  355. [21:44:07] INIT Loss(val): 0.128062 Accuarcy: 0.099609
  356. [21:45:40] Epoch 2: Loss(train): 0.076486 Loss(val): 0.076834
  357. [21:47:06] Epoch 4: Loss(train): 0.069786 Loss(val): 0.070414
  358. [21:48:20] Epoch 6: Loss(train): 0.066293 Loss(val): 0.067163
  359. [21:49:39] Epoch 8: Loss(train): 0.064205 Loss(val): 0.065383
  360. [21:51:00] Epoch 10: Loss(train): 0.062865 Loss(val): 0.063068
  361. [21:52:18] Epoch 12: Loss(train): 0.062064 Loss(val): 0.062093
  362. [21:53:34] Epoch 14: Loss(train): 0.060184 Loss(val): 0.060345
  363. [21:54:52] Epoch 16: Loss(train): 0.058316 Loss(val): 0.058735
  364. [21:56:08] Epoch 18: Loss(train): 0.057090 Loss(val): 0.057527
  365. [21:57:26] Epoch 20: Loss(train): 0.056003 Loss(val): 0.056649
  366. [21:58:44] Epoch 22: Loss(train): 0.055251 Loss(val): 0.056051
  367. [22:00:01] Epoch 24: Loss(train): 0.054980 Loss(val): 0.055802
  368. [22:01:34] Epoch 26: Loss(train): 0.054432 Loss(val): 0.055166
  369. [22:03:15] Epoch 28: Loss(train): 0.054014 Loss(val): 0.054775
  370. [22:04:48] Epoch 30: Loss(train): 0.053364 Loss(val): 0.054182
  371. [22:06:32] Epoch 32: Loss(train): 0.053011 Loss(val): 0.053829
  372. [22:08:16] Epoch 34: Loss(train): 0.052472 Loss(val): 0.053219
  373. [22:09:45] Epoch 36: Loss(train): 0.052156 Loss(val): 0.052837
  374. [22:11:13] Epoch 38: Loss(train): 0.051691 Loss(val): 0.052349
  375. [22:12:40] Epoch 40: Loss(train): 0.051328 Loss(val): 0.051960
  376. [22:12:53] FINAL(40) Loss(val): 0.051960 Accuarcy: 0.644507
  377. Search 16 of 500
  378. momentum0.96, features=[96, 192, 192], dropout_rate=0.3
  379. kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=1.0
  380. [22:13:50] INIT Loss(val): 0.155339 Accuarcy: 0.101888
  381. [22:15:19] Epoch 2: Loss(train): 0.076373 Loss(val): 0.077512
  382. [22:16:45] Epoch 4: Loss(train): 0.069962 Loss(val): 0.071391
  383. [22:18:07] Epoch 6: Loss(train): 0.066614 Loss(val): 0.067830
  384. [22:19:30] Epoch 8: Loss(train): 0.063646 Loss(val): 0.064866
  385. [22:20:51] Epoch 10: Loss(train): 0.061357 Loss(val): 0.061409
  386. [22:22:11] Epoch 12: Loss(train): 0.060890 Loss(val): 0.060584
  387. [22:23:32] Epoch 14: Loss(train): 0.060370 Loss(val): 0.060146
  388. [22:24:51] Epoch 16: Loss(train): 0.058836 Loss(val): 0.059034
  389. [22:26:09] Epoch 18: Loss(train): 0.058080 Loss(val): 0.058426
  390. [22:27:31] Epoch 20: Loss(train): 0.056827 Loss(val): 0.057453
  391. [22:28:50] Epoch 22: Loss(train): 0.055707 Loss(val): 0.056433
  392. [22:30:10] Epoch 24: Loss(train): 0.055046 Loss(val): 0.055827
  393. [22:31:48] Epoch 26: Loss(train): 0.054370 Loss(val): 0.055342
  394. [22:33:53] Epoch 28: Loss(train): 0.053903 Loss(val): 0.054847
  395. [22:35:30] Epoch 30: Loss(train): 0.053405 Loss(val): 0.054422
  396. [22:37:03] Epoch 32: Loss(train): 0.053015 Loss(val): 0.054073
  397. [22:38:31] Epoch 34: Loss(train): 0.052485 Loss(val): 0.053563
  398. [22:40:20] Epoch 36: Loss(train): 0.052231 Loss(val): 0.053308
  399. [22:41:44] Epoch 38: Loss(train): 0.051928 Loss(val): 0.053000
  400. [22:43:16] Epoch 40: Loss(train): 0.051724 Loss(val): 0.052842
  401. [22:43:29] FINAL(40) Loss(val): 0.052842 Accuarcy: 0.618367
  402. Search 17 of 500
  403. momentum0.9, features=[96, 192, 192], dropout_rate=0.1
  404. kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.3
  405. [22:44:29] INIT Loss(val): 0.140444 Accuarcy: 0.087840
  406. [22:45:59] Epoch 2: Loss(train): 0.077613 Loss(val): 0.077837
  407. [22:47:22] Epoch 4: Loss(train): 0.069080 Loss(val): 0.069612
  408. [22:48:55] Epoch 6: Loss(train): 0.065800 Loss(val): 0.066876
  409. [22:50:25] Epoch 8: Loss(train): 0.064667 Loss(val): 0.066089
  410. [22:51:52] Epoch 10: Loss(train): 0.062540 Loss(val): 0.063536
  411. [22:53:13] Epoch 12: Loss(train): 0.062173 Loss(val): 0.062304
  412. [22:54:37] Epoch 14: Loss(train): 0.060266 Loss(val): 0.060558
  413. [22:56:00] Epoch 16: Loss(train): 0.059095 Loss(val): 0.059716
  414. Early stopping with Loss(train) 0.060400 at epoch 17 (Accuracy: 0.520408)
  415. Search 18 of 500
  416. momentum0.9, features=[32, 32, 32], dropout_rate=0.3
  417. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
  418. [22:57:35] INIT Loss(val): 0.122866 Accuarcy: 0.100969
  419. [22:59:04] Epoch 2: Loss(train): 0.083609 Loss(val): 0.083896
  420. [23:00:25] Epoch 4: Loss(train): 0.071636 Loss(val): 0.072329
  421. [23:01:49] Epoch 6: Loss(train): 0.068079 Loss(val): 0.068947
  422. [23:03:15] Epoch 8: Loss(train): 0.064902 Loss(val): 0.065714
  423. [23:05:29] Epoch 10: Loss(train): 0.064068 Loss(val): 0.063601
  424. [23:07:25] Epoch 12: Loss(train): 0.062458 Loss(val): 0.062049
  425. [23:09:11] Epoch 14: Loss(train): 0.061018 Loss(val): 0.060821
  426. [23:11:11] Epoch 16: Loss(train): 0.059970 Loss(val): 0.060042
  427. [23:12:45] Epoch 18: Loss(train): 0.059173 Loss(val): 0.059317
  428. [23:14:32] Epoch 20: Loss(train): 0.058569 Loss(val): 0.058824
  429. [23:16:06] Epoch 22: Loss(train): 0.057706 Loss(val): 0.058048
  430. [23:17:38] Epoch 24: Loss(train): 0.057017 Loss(val): 0.057352
  431. [23:19:03] Epoch 26: Loss(train): 0.056235 Loss(val): 0.056608
  432. [23:20:39] Epoch 28: Loss(train): 0.055231 Loss(val): 0.055639
  433. [23:22:06] Epoch 30: Loss(train): 0.054434 Loss(val): 0.054796
  434. [23:23:38] Epoch 32: Loss(train): 0.053868 Loss(val): 0.054278
  435. [23:25:03] Epoch 34: Loss(train): 0.053368 Loss(val): 0.053715
  436. [23:26:29] Epoch 36: Loss(train): 0.052716 Loss(val): 0.053143
  437. [23:27:56] Epoch 38: Loss(train): 0.052115 Loss(val): 0.052569
  438. [23:29:22] Epoch 40: Loss(train): 0.051541 Loss(val): 0.052065
  439. [23:29:35] FINAL(40) Loss(val): 0.052065 Accuarcy: 0.634830
  440. Search 19 of 500
  441. momentum0.94, features=[96, 192, 192], dropout_rate=0.1
  442. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.03
  443. [23:30:26] INIT Loss(val): 0.144806 Accuarcy: 0.112262
  444. [23:31:59] Epoch 2: Loss(train): 0.074827 Loss(val): 0.075901
  445. [23:33:26] Epoch 4: Loss(train): 0.068091 Loss(val): 0.069344
  446. [23:35:18] Epoch 6: Loss(train): 0.065056 Loss(val): 0.066292
  447. [23:37:15] Epoch 8: Loss(train): 0.063074 Loss(val): 0.064072
  448. [23:39:25] Epoch 10: Loss(train): 0.063645 Loss(val): 0.063041
  449. [23:41:05] Epoch 12: Loss(train): 0.061954 Loss(val): 0.061517
  450. [23:42:54] Epoch 14: Loss(train): 0.060315 Loss(val): 0.060035
  451. [23:44:37] Epoch 16: Loss(train): 0.058829 Loss(val): 0.058677
  452. [23:46:22] Epoch 18: Loss(train): 0.057952 Loss(val): 0.058050
  453. [23:48:02] Epoch 20: Loss(train): 0.056611 Loss(val): 0.056781
  454. [23:49:36] Epoch 22: Loss(train): 0.055679 Loss(val): 0.056027
  455. [23:51:07] Epoch 24: Loss(train): 0.054832 Loss(val): 0.055280
  456. [23:52:42] Epoch 26: Loss(train): 0.053982 Loss(val): 0.054524
  457. [23:54:12] Epoch 28: Loss(train): 0.053434 Loss(val): 0.054000
  458. [23:55:44] Epoch 30: Loss(train): 0.052832 Loss(val): 0.053443
  459. [23:57:20] Epoch 32: Loss(train): 0.052402 Loss(val): 0.053045
  460. [23:58:49] Epoch 34: Loss(train): 0.051839 Loss(val): 0.052468
  461. [00:00:16] Epoch 36: Loss(train): 0.051443 Loss(val): 0.052053
  462. [00:01:42] Epoch 38: Loss(train): 0.051110 Loss(val): 0.051693
  463. [00:03:09] Epoch 40: Loss(train): 0.050843 Loss(val): 0.051443
  464. [00:03:22] FINAL(40) Loss(val): 0.051443 Accuarcy: 0.653452
  465. Search 20 of 500
  466. momentum0.9, features=[64, 64, 64], dropout_rate=0.4
  467. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
  468. [00:04:16] INIT Loss(val): 0.149194 Accuarcy: 0.082381
  469. [00:05:57] Epoch 2: Loss(train): 0.075874 Loss(val): 0.075935
  470. [00:07:50] Epoch 4: Loss(train): 0.069149 Loss(val): 0.069925
  471. [00:09:56] Epoch 6: Loss(train): 0.066218 Loss(val): 0.067506
  472. [00:11:34] Epoch 8: Loss(train): 0.064170 Loss(val): 0.064543
  473. [00:13:19] Epoch 10: Loss(train): 0.062819 Loss(val): 0.062660
  474. [00:14:51] Epoch 12: Loss(train): 0.061025 Loss(val): 0.061116
  475. [00:16:24] Epoch 14: Loss(train): 0.059640 Loss(val): 0.059809
  476. [00:17:59] Epoch 16: Loss(train): 0.058324 Loss(val): 0.058535
  477. [00:19:29] Epoch 18: Loss(train): 0.057796 Loss(val): 0.057942
  478. [00:21:10] Epoch 20: Loss(train): 0.056837 Loss(val): 0.057051
  479. [00:22:49] Epoch 22: Loss(train): 0.056581 Loss(val): 0.056687
  480. [00:24:27] Epoch 24: Loss(train): 0.055684 Loss(val): 0.055845
  481. [00:26:04] Epoch 26: Loss(train): 0.055280 Loss(val): 0.055467
  482. [00:27:38] Epoch 28: Loss(train): 0.054666 Loss(val): 0.054960
  483. [00:29:12] Epoch 30: Loss(train): 0.054681 Loss(val): 0.054927
  484. [00:30:50] Epoch 32: Loss(train): 0.053786 Loss(val): 0.054179
  485. [00:32:24] Epoch 34: Loss(train): 0.053478 Loss(val): 0.053842
  486. [00:33:57] Epoch 36: Loss(train): 0.052924 Loss(val): 0.053352
  487. [00:35:35] Epoch 38: Loss(train): 0.052522 Loss(val): 0.053011
  488. [00:37:10] Epoch 40: Loss(train): 0.051971 Loss(val): 0.052540
  489. [00:37:21] FINAL(40) Loss(val): 0.052540 Accuarcy: 0.630085
  490. Search 21 of 500
  491. momentum0.92, features=[96, 192, 192], dropout_rate=0.4
  492. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
  493. [00:38:18] INIT Loss(val): 0.129994 Accuarcy: 0.091718
  494. [00:39:56] Epoch 2: Loss(train): 0.078515 Loss(val): 0.079490
  495. [00:41:28] Epoch 4: Loss(train): 0.070014 Loss(val): 0.071300
  496. [00:43:03] Epoch 6: Loss(train): 0.066612 Loss(val): 0.067780
  497. [00:44:45] Epoch 8: Loss(train): 0.063762 Loss(val): 0.065018
  498. [00:46:24] Epoch 10: Loss(train): 0.061744 Loss(val): 0.062313
  499. [00:48:00] Epoch 12: Loss(train): 0.061314 Loss(val): 0.060970
  500. [00:49:35] Epoch 14: Loss(train): 0.059673 Loss(val): 0.059553
  501. [00:51:11] Epoch 16: Loss(train): 0.058347 Loss(val): 0.058497
  502. [00:52:47] Epoch 18: Loss(train): 0.057153 Loss(val): 0.057509
  503. [00:54:24] Epoch 20: Loss(train): 0.056539 Loss(val): 0.057007
  504. [00:55:59] Epoch 22: Loss(train): 0.055904 Loss(val): 0.056457
  505. [00:57:37] Epoch 24: Loss(train): 0.055228 Loss(val): 0.055896
  506. [00:59:20] Epoch 26: Loss(train): 0.054506 Loss(val): 0.055190
  507. [01:01:02] Epoch 28: Loss(train): 0.054147 Loss(val): 0.054805
  508. [01:02:39] Epoch 30: Loss(train): 0.053628 Loss(val): 0.054319
  509. [01:04:21] Epoch 32: Loss(train): 0.053111 Loss(val): 0.053844
  510. [01:06:04] Epoch 34: Loss(train): 0.052740 Loss(val): 0.053401
  511. [01:07:48] Epoch 36: Loss(train): 0.052391 Loss(val): 0.053115
  512. [01:09:25] Epoch 38: Loss(train): 0.052113 Loss(val): 0.052774
  513. [01:11:02] Epoch 40: Loss(train): 0.051565 Loss(val): 0.052283
  514. [01:11:16] FINAL(40) Loss(val): 0.052283 Accuarcy: 0.628997
  515. Search 22 of 500
  516. momentum0.9, features=[32, 32, 32], dropout_rate=0.8
  517. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
  518. [01:12:17] INIT Loss(val): 0.135674 Accuarcy: 0.100561
  519. [01:13:58] Epoch 2: Loss(train): 0.077077 Loss(val): 0.077243
  520. [01:15:36] Epoch 4: Loss(train): 0.068678 Loss(val): 0.069657
  521. [01:17:13] Epoch 6: Loss(train): 0.065798 Loss(val): 0.067142
  522. [01:18:52] Epoch 8: Loss(train): 0.063817 Loss(val): 0.065166
  523. [01:20:27] Epoch 10: Loss(train): 0.062389 Loss(val): 0.062729
  524. [01:22:02] Epoch 12: Loss(train): 0.061790 Loss(val): 0.061513
  525. [01:23:42] Epoch 14: Loss(train): 0.060073 Loss(val): 0.060047
  526. [01:25:21] Epoch 16: Loss(train): 0.059103 Loss(val): 0.059342
  527. [01:27:01] Epoch 18: Loss(train): 0.057784 Loss(val): 0.058103
  528. [01:28:43] Epoch 20: Loss(train): 0.056717 Loss(val): 0.057255
  529. [01:30:23] Epoch 22: Loss(train): 0.056179 Loss(val): 0.056797
  530. [01:32:05] Epoch 24: Loss(train): 0.055371 Loss(val): 0.056182
  531. [01:33:42] Epoch 26: Loss(train): 0.054835 Loss(val): 0.055637
  532. [01:35:21] Epoch 28: Loss(train): 0.054415 Loss(val): 0.055158
  533. [01:37:00] Epoch 30: Loss(train): 0.053935 Loss(val): 0.054692
  534. [01:38:45] Epoch 32: Loss(train): 0.053190 Loss(val): 0.054009
  535. [01:40:29] Epoch 34: Loss(train): 0.052750 Loss(val): 0.053599
  536. [01:42:10] Epoch 36: Loss(train): 0.052327 Loss(val): 0.053117
  537. [01:44:00] Epoch 38: Loss(train): 0.051865 Loss(val): 0.052722
  538. [01:45:43] Epoch 40: Loss(train): 0.051399 Loss(val): 0.052158
  539. [01:45:57] FINAL(40) Loss(val): 0.052158 Accuarcy: 0.637602
  540. Search 23 of 500
  541. momentum0.94, features=[32, 32, 32], dropout_rate=0.4
  542. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
  543. [01:46:59] INIT Loss(val): 0.148260 Accuarcy: 0.107823
  544. [01:48:51] Epoch 2: Loss(train): 0.076951 Loss(val): 0.077701
  545. [01:50:32] Epoch 4: Loss(train): 0.069506 Loss(val): 0.070086
  546. [01:52:13] Epoch 6: Loss(train): 0.066102 Loss(val): 0.066808
  547. [01:53:53] Epoch 8: Loss(train): 0.063157 Loss(val): 0.064062
  548. [01:55:33] Epoch 10: Loss(train): 0.061524 Loss(val): 0.062082
  549. [01:57:10] Epoch 12: Loss(train): 0.061474 Loss(val): 0.061203
  550. [01:58:53] Epoch 14: Loss(train): 0.061059 Loss(val): 0.060495
  551. [02:00:30] Epoch 16: Loss(train): 0.060032 Loss(val): 0.059752
  552. [02:02:10] Epoch 18: Loss(train): 0.058489 Loss(val): 0.058475
  553. [02:03:58] Epoch 20: Loss(train): 0.057222 Loss(val): 0.057490
  554. [02:05:39] Epoch 22: Loss(train): 0.056035 Loss(val): 0.056433
  555. [02:07:23] Epoch 24: Loss(train): 0.055428 Loss(val): 0.055924
  556. [02:09:03] Epoch 26: Loss(train): 0.054762 Loss(val): 0.055473
  557. [02:10:45] Epoch 28: Loss(train): 0.054114 Loss(val): 0.054938
  558. [02:12:36] Epoch 30: Loss(train): 0.053423 Loss(val): 0.054303
  559. [02:14:22] Epoch 32: Loss(train): 0.053115 Loss(val): 0.054204
  560. [02:16:12] Epoch 34: Loss(train): 0.052551 Loss(val): 0.053640
  561. [02:18:02] Epoch 36: Loss(train): 0.052369 Loss(val): 0.053541
  562. [02:19:47] Epoch 38: Loss(train): 0.052099 Loss(val): 0.053308
  563. [02:21:40] Epoch 40: Loss(train): 0.051823 Loss(val): 0.052996
  564. [02:21:56] FINAL(40) Loss(val): 0.052996 Accuarcy: 0.616395
  565. Search 24 of 500
  566. momentum0.99, features=[32, 64, 128], dropout_rate=0.1
  567. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
  568. [02:23:02] INIT Loss(val): 0.133748 Accuarcy: 0.106752
  569. [02:24:59] Epoch 2: Loss(train): 0.084285 Loss(val): 0.085462
  570. [02:26:52] Epoch 4: Loss(train): 0.073009 Loss(val): 0.074089
  571. [02:28:38] Epoch 6: Loss(train): 0.069297 Loss(val): 0.071221
  572. [02:30:26] Epoch 8: Loss(train): 0.066733 Loss(val): 0.068690
  573. [02:32:11] Epoch 10: Loss(train): 0.064559 Loss(val): 0.066219
  574. [02:33:54] Epoch 12: Loss(train): 0.064015 Loss(val): 0.064132
  575. [02:35:39] Epoch 14: Loss(train): 0.062375 Loss(val): 0.062579
  576. [02:37:22] Epoch 16: Loss(train): 0.060784 Loss(val): 0.061219
  577. [02:39:04] Epoch 18: Loss(train): 0.059065 Loss(val): 0.059696
  578. [02:40:53] Epoch 20: Loss(train): 0.057731 Loss(val): 0.058328
  579. [02:42:53] Epoch 22: Loss(train): 0.056679 Loss(val): 0.057394
  580. [02:45:15] Epoch 24: Loss(train): 0.056036 Loss(val): 0.056692
  581. [02:47:22] Epoch 26: Loss(train): 0.055356 Loss(val): 0.055885
  582. [02:49:12] Epoch 28: Loss(train): 0.054560 Loss(val): 0.055035
  583. [02:50:58] Epoch 30: Loss(train): 0.054176 Loss(val): 0.054564
  584. [02:52:50] Epoch 32: Loss(train): 0.053846 Loss(val): 0.054231
  585. [02:54:38] Epoch 34: Loss(train): 0.053485 Loss(val): 0.053779
  586. [02:56:28] Epoch 36: Loss(train): 0.052997 Loss(val): 0.053439
  587. [02:58:15] Epoch 38: Loss(train): 0.052470 Loss(val): 0.052942
  588. [03:00:02] Epoch 40: Loss(train): 0.052162 Loss(val): 0.052635
  589. [03:00:19] FINAL(40) Loss(val): 0.052635 Accuarcy: 0.628929
  590. Search 25 of 500
  591. momentum0.96, features=[64, 64, 64], dropout_rate=0.4
  592. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.03
  593. [03:01:32] INIT Loss(val): 0.139732 Accuarcy: 0.089677
  594. [03:03:33] Epoch 2: Loss(train): 0.082942 Loss(val): 0.083400
  595. [03:05:23] Epoch 4: Loss(train): 0.068298 Loss(val): 0.068648
  596. [03:07:10] Epoch 6: Loss(train): 0.065199 Loss(val): 0.066157
  597. [03:09:11] Epoch 8: Loss(train): 0.062757 Loss(val): 0.063605
  598. [03:11:01] Epoch 10: Loss(train): 0.060662 Loss(val): 0.061181
  599. [03:12:45] Epoch 12: Loss(train): 0.061178 Loss(val): 0.060557
  600. [03:14:29] Epoch 14: Loss(train): 0.060727 Loss(val): 0.060099
  601. [03:16:15] Epoch 16: Loss(train): 0.059698 Loss(val): 0.059351
  602. [03:18:07] Epoch 18: Loss(train): 0.059191 Loss(val): 0.058946
  603. [03:19:58] Epoch 20: Loss(train): 0.058253 Loss(val): 0.058241
  604. [03:21:48] Epoch 22: Loss(train): 0.057497 Loss(val): 0.057644
  605. [03:23:39] Epoch 24: Loss(train): 0.056404 Loss(val): 0.056670
  606. [03:25:28] Epoch 26: Loss(train): 0.055838 Loss(val): 0.056263
  607. [03:27:20] Epoch 28: Loss(train): 0.055152 Loss(val): 0.055671
  608. [03:29:10] Epoch 30: Loss(train): 0.054532 Loss(val): 0.055117
  609. [03:31:03] Epoch 32: Loss(train): 0.054211 Loss(val): 0.054901
  610. [03:32:55] Epoch 34: Loss(train): 0.053131 Loss(val): 0.053860
  611. [03:34:49] Epoch 36: Loss(train): 0.052709 Loss(val): 0.053471
  612. [03:36:40] Epoch 38: Loss(train): 0.052348 Loss(val): 0.053128
  613. [03:38:31] Epoch 40: Loss(train): 0.052056 Loss(val): 0.052836
  614. [03:38:48] FINAL(40) Loss(val): 0.052836 Accuarcy: 0.626956
  615. Search 26 of 500
  616. momentum0.98, features=[64, 64, 64], dropout_rate=0.3
  617. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.3
  618. [03:40:00] INIT Loss(val): 0.166028 Accuarcy: 0.109320
  619. [03:42:03] Epoch 2: Loss(train): 0.078286 Loss(val): 0.079137
  620. [03:43:50] Epoch 4: Loss(train): 0.069890 Loss(val): 0.070590
  621. [03:45:42] Epoch 6: Loss(train): 0.068108 Loss(val): 0.069192
  622. Early stopping with Loss(train) 0.069478 at epoch 6 (Accuracy: 0.431769)
  623. Search 27 of 500
  624. momentum0.99, features=[32, 64, 128], dropout_rate=0.4
  625. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
  626. [03:47:05] INIT Loss(val): 0.130044 Accuarcy: 0.093027
  627. [03:49:03] Epoch 2: Loss(train): 0.073057 Loss(val): 0.073623
  628. [03:50:54] Epoch 4: Loss(train): 0.068406 Loss(val): 0.069279
  629. [03:52:42] Epoch 6: Loss(train): 0.064816 Loss(val): 0.065600
  630. [03:54:34] Epoch 8: Loss(train): 0.062026 Loss(val): 0.062644
  631. [03:56:22] Epoch 10: Loss(train): 0.061487 Loss(val): 0.060742
  632. [03:58:22] Epoch 12: Loss(train): 0.060632 Loss(val): 0.059967
  633. [04:00:24] Epoch 14: Loss(train): 0.058923 Loss(val): 0.058691
  634. [04:02:21] Epoch 16: Loss(train): 0.057931 Loss(val): 0.057902
  635. [04:04:14] Epoch 18: Loss(train): 0.057200 Loss(val): 0.057431
  636. [04:06:08] Epoch 20: Loss(train): 0.055906 Loss(val): 0.056321
  637. [04:08:02] Epoch 22: Loss(train): 0.055524 Loss(val): 0.056040
  638. [04:09:56] Epoch 24: Loss(train): 0.054580 Loss(val): 0.055210
  639. [04:11:47] Epoch 26: Loss(train): 0.054290 Loss(val): 0.054957
  640. [04:13:45] Epoch 28: Loss(train): 0.053581 Loss(val): 0.054256
  641. [04:15:39] Epoch 30: Loss(train): 0.053228 Loss(val): 0.053937
  642. [04:17:38] Epoch 32: Loss(train): 0.052785 Loss(val): 0.053508
  643. Early stopping with Loss(train) 0.054120 at epoch 33 (Accuracy: 0.584745)
  644. Search 28 of 500
  645. momentum0.9, features=[96, 192, 192], dropout_rate=0.6
  646. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
  647. [04:19:49] INIT Loss(val): 0.136011 Accuarcy: 0.099609
  648. [04:21:53] Epoch 2: Loss(train): 0.077656 Loss(val): 0.077949
  649. [04:23:48] Epoch 4: Loss(train): 0.068895 Loss(val): 0.069556
  650. [04:25:40] Epoch 6: Loss(train): 0.066168 Loss(val): 0.067473
  651. [04:27:36] Epoch 8: Loss(train): 0.063354 Loss(val): 0.064709
  652. [04:29:29] Epoch 10: Loss(train): 0.061640 Loss(val): 0.062868
  653. [04:31:19] Epoch 12: Loss(train): 0.061320 Loss(val): 0.060932
  654. [04:33:10] Epoch 14: Loss(train): 0.059866 Loss(val): 0.059400
  655. [04:35:01] Epoch 16: Loss(train): 0.058214 Loss(val): 0.058128
  656. [04:36:51] Epoch 18: Loss(train): 0.057005 Loss(val): 0.057073
  657. [04:38:50] Epoch 20: Loss(train): 0.056297 Loss(val): 0.056596
  658. [04:40:46] Epoch 22: Loss(train): 0.055755 Loss(val): 0.056088
  659. [04:42:41] Epoch 24: Loss(train): 0.055030 Loss(val): 0.055492
  660. [04:44:38] Epoch 26: Loss(train): 0.054414 Loss(val): 0.054884
  661. [04:46:31] Epoch 28: Loss(train): 0.053946 Loss(val): 0.054396
  662. [04:48:26] Epoch 30: Loss(train): 0.053415 Loss(val): 0.053909
  663. [04:50:21] Epoch 32: Loss(train): 0.052741 Loss(val): 0.053254
  664. [04:52:18] Epoch 34: Loss(train): 0.052312 Loss(val): 0.052819
  665. [04:54:15] Epoch 36: Loss(train): 0.051820 Loss(val): 0.052377
  666. Early stopping with Loss(train) 0.053078 at epoch 37 (Accuracy: 0.614864)
  667. Search 29 of 500
  668. momentum0.98, features=[32, 32, 32], dropout_rate=0.6
  669. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.03
  670. [04:56:34] INIT Loss(val): 0.127762 Accuarcy: 0.093554
  671. [04:58:39] Epoch 2: Loss(train): 0.081097 Loss(val): 0.081242
  672. [05:00:37] Epoch 4: Loss(train): 0.070298 Loss(val): 0.070567
  673. [05:02:37] Epoch 6: Loss(train): 0.065919 Loss(val): 0.066522
  674. [05:04:42] Epoch 8: Loss(train): 0.063405 Loss(val): 0.064249
  675. [05:06:38] Epoch 10: Loss(train): 0.063253 Loss(val): 0.062682
  676. [05:08:34] Epoch 12: Loss(train): 0.061738 Loss(val): 0.061292
  677. [05:10:33] Epoch 14: Loss(train): 0.060479 Loss(val): 0.060325
  678. [05:12:27] Epoch 16: Loss(train): 0.059348 Loss(val): 0.059426
  679. [05:14:21] Epoch 18: Loss(train): 0.058353 Loss(val): 0.058594
  680. [05:16:16] Epoch 20: Loss(train): 0.057237 Loss(val): 0.057736
  681. [05:18:12] Epoch 22: Loss(train): 0.056678 Loss(val): 0.057289
  682. [05:20:15] Epoch 24: Loss(train): 0.055750 Loss(val): 0.056493
  683. [05:22:22] Epoch 26: Loss(train): 0.055023 Loss(val): 0.055779
  684. [05:24:29] Epoch 28: Loss(train): 0.054617 Loss(val): 0.055446
  685. [05:26:34] Epoch 30: Loss(train): 0.053968 Loss(val): 0.054875
  686. [05:28:41] Epoch 32: Loss(train): 0.053587 Loss(val): 0.054505
  687. [05:30:46] Epoch 34: Loss(train): 0.053049 Loss(val): 0.054103
  688. [05:32:47] Epoch 36: Loss(train): 0.052663 Loss(val): 0.053695
  689. [05:34:43] Epoch 38: Loss(train): 0.052114 Loss(val): 0.053180
  690. [05:37:04] Epoch 40: Loss(train): 0.051749 Loss(val): 0.052826
  691. [05:37:22] FINAL(40) Loss(val): 0.052826 Accuarcy: 0.624507
  692. Early stopping with Loss(train) 0.052970 at epoch 40 (Accuracy: 0.595935)
  693. Search 30 of 500
  694. momentum0.98, features=[96, 192, 192], dropout_rate=0.1
  695. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
  696. [05:39:00] INIT Loss(val): 0.127742 Accuarcy: 0.095663
  697. [05:41:51] Epoch 2: Loss(train): 0.081031 Loss(val): 0.081951
  698. [05:45:05] Epoch 4: Loss(train): 0.070746 Loss(val): 0.071572
  699. [05:48:05] Epoch 6: Loss(train): 0.067815 Loss(val): 0.069164
  700. [05:50:04] Epoch 8: Loss(train): 0.065377 Loss(val): 0.066656
  701. [05:52:08] Epoch 10: Loss(train): 0.063210 Loss(val): 0.064106
  702. [05:54:41] Epoch 12: Loss(train): 0.062753 Loss(val): 0.062455
  703. [05:56:39] Epoch 14: Loss(train): 0.061486 Loss(val): 0.061452
  704. [05:58:53] Epoch 16: Loss(train): 0.060042 Loss(val): 0.060332
  705. [06:00:49] Epoch 18: Loss(train): 0.059365 Loss(val): 0.059779
  706. [06:02:54] Epoch 20: Loss(train): 0.058556 Loss(val): 0.059076
  707. [06:04:54] Epoch 22: Loss(train): 0.057655 Loss(val): 0.058139
  708. [06:06:56] Epoch 24: Loss(train): 0.056971 Loss(val): 0.057441
  709. [06:08:55] Epoch 26: Loss(train): 0.055996 Loss(val): 0.056477
  710. [06:10:58] Epoch 28: Loss(train): 0.055765 Loss(val): 0.056300
  711. [06:14:14] Epoch 30: Loss(train): 0.054864 Loss(val): 0.055330
  712. [06:16:31] Epoch 32: Loss(train): 0.054358 Loss(val): 0.054817
  713. [06:19:21] Epoch 34: Loss(train): 0.053667 Loss(val): 0.054224
  714. [06:21:55] Epoch 36: Loss(train): 0.053111 Loss(val): 0.053710
  715. [06:24:00] Epoch 38: Loss(train): 0.052701 Loss(val): 0.053255
  716. [06:26:17] Epoch 40: Loss(train): 0.052049 Loss(val): 0.052678
  717. [06:26:41] FINAL(40) Loss(val): 0.052678 Accuarcy: 0.631378
  718. Search 31 of 500
  719. momentum0.9, features=[32, 64, 128], dropout_rate=0.8
  720. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.03
  721. [06:28:02] INIT Loss(val): 0.133576 Accuarcy: 0.099745
  722. [06:30:17] Epoch 2: Loss(train): 0.080279 Loss(val): 0.080963
  723. [06:32:18] Epoch 4: Loss(train): 0.070567 Loss(val): 0.071757
  724. [06:34:19] Epoch 6: Loss(train): 0.066493 Loss(val): 0.067333
  725. [06:36:21] Epoch 8: Loss(train): 0.064128 Loss(val): 0.064883
  726. [06:38:18] Epoch 10: Loss(train): 0.062089 Loss(val): 0.062799
  727. [06:40:16] Epoch 12: Loss(train): 0.060965 Loss(val): 0.060560
  728. [06:42:14] Epoch 14: Loss(train): 0.060438 Loss(val): 0.059971
  729. [06:44:43] Epoch 16: Loss(train): 0.059131 Loss(val): 0.058957
  730. [06:48:03] Epoch 18: Loss(train): 0.057784 Loss(val): 0.057753
  731. [06:50:43] Epoch 20: Loss(train): 0.057066 Loss(val): 0.057209
  732. [06:53:15] Epoch 22: Loss(train): 0.055903 Loss(val): 0.056190
  733. [06:55:38] Epoch 24: Loss(train): 0.055119 Loss(val): 0.055490
  734. [06:57:56] Epoch 26: Loss(train): 0.054542 Loss(val): 0.054945
  735. [07:00:08] Epoch 28: Loss(train): 0.054099 Loss(val): 0.054588
  736. [07:02:13] Epoch 30: Loss(train): 0.053754 Loss(val): 0.054166
  737. [07:04:20] Epoch 32: Loss(train): 0.053401 Loss(val): 0.053892
  738. [07:06:25] Epoch 34: Loss(train): 0.053173 Loss(val): 0.053717
  739. [07:08:27] Epoch 36: Loss(train): 0.052537 Loss(val): 0.053207
  740. [07:10:29] Epoch 38: Loss(train): 0.052195 Loss(val): 0.052842
  741. [07:12:29] Epoch 40: Loss(train): 0.051708 Loss(val): 0.052489
  742. [07:12:47] FINAL(40) Loss(val): 0.052489 Accuarcy: 0.625255
  743. Search 32 of 500
  744. momentum0.99, features=[32, 32, 32], dropout_rate=0.3
  745. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
  746. [07:14:30] INIT Loss(val): 0.133619 Accuarcy: 0.084439
  747. [07:18:07] Epoch 2: Loss(train): 0.073850 Loss(val): 0.074187
  748. [07:20:36] Epoch 4: Loss(train): 0.067530 Loss(val): 0.068399
  749. [07:23:14] Epoch 6: Loss(train): 0.064794 Loss(val): 0.065898
  750. [07:25:46] Epoch 8: Loss(train): 0.062768 Loss(val): 0.063800
  751. [07:27:54] Epoch 10: Loss(train): 0.062472 Loss(val): 0.062035
  752. [07:30:10] Epoch 12: Loss(train): 0.060418 Loss(val): 0.060405
  753. [07:32:26] Epoch 14: Loss(train): 0.059070 Loss(val): 0.059311
  754. [07:34:35] Epoch 16: Loss(train): 0.057910 Loss(val): 0.058325
  755. [07:36:44] Epoch 18: Loss(train): 0.056905 Loss(val): 0.057580
  756. [07:38:54] Epoch 20: Loss(train): 0.056036 Loss(val): 0.056788
  757. [07:40:57] Epoch 22: Loss(train): 0.055506 Loss(val): 0.056173
  758. [07:43:06] Epoch 24: Loss(train): 0.054936 Loss(val): 0.055625
  759. [07:45:27] Epoch 26: Loss(train): 0.054225 Loss(val): 0.054838
  760. [07:48:13] Epoch 28: Loss(train): 0.053781 Loss(val): 0.054315
  761. [07:51:16] Epoch 30: Loss(train): 0.053474 Loss(val): 0.053908
  762. [07:54:02] Epoch 32: Loss(train): 0.052798 Loss(val): 0.053247
  763. [07:56:36] Epoch 34: Loss(train): 0.052396 Loss(val): 0.052880
  764. [07:59:01] Epoch 36: Loss(train): 0.052076 Loss(val): 0.052543
  765. [08:01:20] Epoch 38: Loss(train): 0.051783 Loss(val): 0.052259
  766. [08:03:37] Epoch 40: Loss(train): 0.051529 Loss(val): 0.052001
  767. [08:03:57] FINAL(40) Loss(val): 0.052001 Accuarcy: 0.645969
  768. Search 33 of 500
  769. momentum0.96, features=[32, 64, 128], dropout_rate=0.1
  770. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
  771. [08:05:24] INIT Loss(val): 0.178517 Accuarcy: 0.112415
  772. [08:07:42] Epoch 2: Loss(train): 0.073139 Loss(val): 0.073297
  773. [08:09:50] Epoch 4: Loss(train): 0.068176 Loss(val): 0.068788
  774. [08:11:55] Epoch 6: Loss(train): 0.065703 Loss(val): 0.066643
  775. [08:14:03] Epoch 8: Loss(train): 0.063960 Loss(val): 0.064976
  776. [08:16:06] Epoch 10: Loss(train): 0.062551 Loss(val): 0.063301
  777. [08:18:47] Epoch 12: Loss(train): 0.063731 Loss(val): 0.062842
  778. [08:21:02] Epoch 14: Loss(train): 0.061109 Loss(val): 0.060589
  779. [08:23:14] Epoch 16: Loss(train): 0.059993 Loss(val): 0.059475
  780. [08:25:26] Epoch 18: Loss(train): 0.058808 Loss(val): 0.058376
  781. [08:27:50] Epoch 20: Loss(train): 0.057739 Loss(val): 0.057466
  782. [08:29:59] Epoch 22: Loss(train): 0.057158 Loss(val): 0.056976
  783. [08:32:06] Epoch 24: Loss(train): 0.056492 Loss(val): 0.056414
  784. [08:34:28] Epoch 26: Loss(train): 0.055811 Loss(val): 0.055825
  785. [08:36:36] Epoch 28: Loss(train): 0.055204 Loss(val): 0.055333
  786. [08:38:46] Epoch 30: Loss(train): 0.054898 Loss(val): 0.055027
  787. [08:41:09] Epoch 32: Loss(train): 0.053986 Loss(val): 0.054217
  788. [08:43:25] Epoch 34: Loss(train): 0.053655 Loss(val): 0.053866
  789. [08:45:34] Epoch 36: Loss(train): 0.052755 Loss(val): 0.053041
  790. [08:47:51] Epoch 38: Loss(train): 0.052027 Loss(val): 0.052424
  791. [08:50:00] Epoch 40: Loss(train): 0.051380 Loss(val): 0.051832
  792. [08:50:21] FINAL(40) Loss(val): 0.051832 Accuarcy: 0.644133
  793. Search 34 of 500
  794. momentum0.9, features=[96, 192, 192], dropout_rate=0.4
  795. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
  796. [08:51:40] INIT Loss(val): 0.144004 Accuarcy: 0.099796
  797. [08:53:56] Epoch 2: Loss(train): 0.076873 Loss(val): 0.077967
  798. [08:56:01] Epoch 4: Loss(train): 0.069047 Loss(val): 0.070184
  799. [08:58:14] Epoch 6: Loss(train): 0.066172 Loss(val): 0.067933
  800. [09:00:35] Epoch 8: Loss(train): 0.063611 Loss(val): 0.064377
  801. [09:02:47] Epoch 10: Loss(train): 0.063118 Loss(val): 0.062959
  802. [09:05:01] Epoch 12: Loss(train): 0.060982 Loss(val): 0.061159
  803. [09:07:14] Epoch 14: Loss(train): 0.059704 Loss(val): 0.060033
  804. [09:09:23] Epoch 16: Loss(train): 0.058530 Loss(val): 0.059018
  805. [09:11:38] Epoch 18: Loss(train): 0.057384 Loss(val): 0.057913
  806. [09:14:04] Epoch 20: Loss(train): 0.056447 Loss(val): 0.057108
  807. [09:16:16] Epoch 22: Loss(train): 0.055736 Loss(val): 0.056406
  808. [09:18:40] Epoch 24: Loss(train): 0.055298 Loss(val): 0.056005
  809. [09:21:01] Epoch 26: Loss(train): 0.054855 Loss(val): 0.055544
  810. [09:23:14] Epoch 28: Loss(train): 0.054428 Loss(val): 0.055165
  811. [09:25:34] Epoch 30: Loss(train): 0.053971 Loss(val): 0.054723
  812. Early stopping with Loss(train) 0.055224 at epoch 31 (Accuracy: 0.570884)
  813. Search 35 of 500
  814. momentum0.98, features=[32, 64, 128], dropout_rate=0.3
  815. kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.01
  816. [09:28:11] INIT Loss(val): 0.131561 Accuarcy: 0.088435
  817. [09:30:33] Epoch 2: Loss(train): 0.078600 Loss(val): 0.079560
  818. [09:32:44] Epoch 4: Loss(train): 0.069469 Loss(val): 0.070441
  819. [09:34:53] Epoch 6: Loss(train): 0.066407 Loss(val): 0.067910
  820. [09:37:13] Epoch 8: Loss(train): 0.063834 Loss(val): 0.065309
  821. [09:39:54] Epoch 10: Loss(train): 0.063342 Loss(val): 0.063286
  822. [09:42:15] Epoch 12: Loss(train): 0.061538 Loss(val): 0.061831
  823. [09:44:29] Epoch 14: Loss(train): 0.060098 Loss(val): 0.060590
  824. [09:46:46] Epoch 16: Loss(train): 0.058880 Loss(val): 0.059626
  825. [09:48:56] Epoch 18: Loss(train): 0.058013 Loss(val): 0.058851
  826. [09:51:21] Epoch 20: Loss(train): 0.057582 Loss(val): 0.058371
  827. Early stopping with Loss(train) 0.059074 at epoch 20 (Accuracy: 0.533912)
  828. Search 36 of 500
  829. momentum0.98, features=[32, 64, 128], dropout_rate=0.1
  830. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
  831. [09:53:01] INIT Loss(val): 0.128501 Accuarcy: 0.093844
  832. [09:55:31] Epoch 2: Loss(train): 0.078614 Loss(val): 0.078914
  833. [09:57:57] Epoch 4: Loss(train): 0.069358 Loss(val): 0.069975
  834. [10:00:16] Epoch 6: Loss(train): 0.065321 Loss(val): 0.066424
  835. [10:02:44] Epoch 8: Loss(train): 0.063663 Loss(val): 0.065086
  836. [10:05:02] Epoch 10: Loss(train): 0.061664 Loss(val): 0.062794
  837. [10:07:20] Epoch 12: Loss(train): 0.060420 Loss(val): 0.059941
  838. [10:09:34] Epoch 14: Loss(train): 0.059115 Loss(val): 0.058971
  839. [10:11:45] Epoch 16: Loss(train): 0.058384 Loss(val): 0.058312
  840. [10:13:59] Epoch 18: Loss(train): 0.057044 Loss(val): 0.057162
  841. [10:16:13] Epoch 20: Loss(train): 0.056068 Loss(val): 0.056346
  842. [10:18:34] Epoch 22: Loss(train): 0.055208 Loss(val): 0.055646
  843. [10:20:58] Epoch 24: Loss(train): 0.054296 Loss(val): 0.054775
  844. [10:23:15] Epoch 26: Loss(train): 0.053540 Loss(val): 0.054122
  845. [10:25:39] Epoch 28: Loss(train): 0.052913 Loss(val): 0.053533
  846. [10:27:58] Epoch 30: Loss(train): 0.052410 Loss(val): 0.052975
  847. [10:30:17] Epoch 32: Loss(train): 0.051984 Loss(val): 0.052642
  848. [10:32:35] Epoch 34: Loss(train): 0.051636 Loss(val): 0.052200
  849. [10:35:02] Epoch 36: Loss(train): 0.051358 Loss(val): 0.051943
  850. [10:37:34] Epoch 38: Loss(train): 0.051226 Loss(val): 0.051788
  851. [10:40:00] Epoch 40: Loss(train): 0.050862 Loss(val): 0.051429
  852. [10:40:21] FINAL(40) Loss(val): 0.051429 Accuarcy: 0.651922
  853. Search 37 of 500
  854. momentum0.94, features=[64, 64, 64], dropout_rate=0.8
  855. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
  856. [10:41:50] INIT Loss(val): 0.135753 Accuarcy: 0.104099
  857. [10:44:26] Epoch 2: Loss(train): 0.079794 Loss(val): 0.080364
  858. [10:46:44] Epoch 4: Loss(train): 0.069623 Loss(val): 0.070324
  859. [10:49:04] Epoch 6: Loss(train): 0.064974 Loss(val): 0.065927
  860. [10:51:28] Epoch 8: Loss(train): 0.062599 Loss(val): 0.063265
  861. [10:53:40] Epoch 10: Loss(train): 0.062145 Loss(val): 0.061630
  862. [10:55:54] Epoch 12: Loss(train): 0.061773 Loss(val): 0.061062
  863. [10:58:12] Epoch 14: Loss(train): 0.060630 Loss(val): 0.060278
  864. [11:00:38] Epoch 16: Loss(train): 0.059063 Loss(val): 0.059083
  865. [11:03:04] Epoch 18: Loss(train): 0.057864 Loss(val): 0.058049
  866. [11:05:33] Epoch 20: Loss(train): 0.056927 Loss(val): 0.057260
  867. [11:08:05] Epoch 22: Loss(train): 0.055935 Loss(val): 0.056480
  868. [11:10:24] Epoch 24: Loss(train): 0.054968 Loss(val): 0.055692
  869. [11:12:51] Epoch 26: Loss(train): 0.054661 Loss(val): 0.055324
  870. [11:15:24] Epoch 28: Loss(train): 0.054079 Loss(val): 0.054774
  871. [11:17:53] Epoch 30: Loss(train): 0.053640 Loss(val): 0.054396
  872. [11:20:23] Epoch 32: Loss(train): 0.053329 Loss(val): 0.054070
  873. [11:22:48] Epoch 34: Loss(train): 0.052933 Loss(val): 0.053679
  874. [11:25:08] Epoch 36: Loss(train): 0.052513 Loss(val): 0.053309
  875. [11:27:32] Epoch 38: Loss(train): 0.052231 Loss(val): 0.053066
  876. [11:29:55] Epoch 40: Loss(train): 0.051719 Loss(val): 0.052561
  877. [11:30:19] FINAL(40) Loss(val): 0.052561 Accuarcy: 0.624575
  878. Search 38 of 500
  879. momentum0.96, features=[64, 64, 64], dropout_rate=0.6
  880. kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
  881. [11:31:48] INIT Loss(val): 0.147992 Accuarcy: 0.094031
  882. [11:34:20] Epoch 2: Loss(train): 0.081095 Loss(val): 0.081899
  883. [11:36:38] Epoch 4: Loss(train): 0.071199 Loss(val): 0.072058
  884. [11:39:04] Epoch 6: Loss(train): 0.066202 Loss(val): 0.067400
  885. [11:41:36] Epoch 8: Loss(train): 0.063791 Loss(val): 0.065201
  886. [11:44:05] Epoch 10: Loss(train): 0.061899 Loss(val): 0.062050
  887. [11:46:25] Epoch 12: Loss(train): 0.061027 Loss(val): 0.060768
  888. [11:48:46] Epoch 14: Loss(train): 0.059124 Loss(val): 0.059066
  889. [11:51:10] Epoch 16: Loss(train): 0.057615 Loss(val): 0.057749
  890. [11:53:41] Epoch 18: Loss(train): 0.056756 Loss(val): 0.056945
  891. [11:56:19] Epoch 20: Loss(train): 0.056063 Loss(val): 0.056301
  892. [11:58:45] Epoch 22: Loss(train): 0.055472 Loss(val): 0.055713
  893. [12:01:20] Epoch 24: Loss(train): 0.054792 Loss(val): 0.055112