123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970 |
- --------[19_09_2019 18:04:11]--------
- Random Grid Search
- Search 1 of 500
- momentum0.99, features=[64, 64, 64], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
- [18:05:27] INIT Loss(val): 0.139415 Accuarcy: 0.086344
- [18:07:54] Epoch 2: Loss(train): 0.077418 Loss(val): 0.077792
- [18:08:22] Epoch 4: Loss(train): 0.068747 Loss(val): 0.069827
- [18:08:53] Epoch 6: Loss(train): 0.066216 Loss(val): 0.067672
- [18:09:24] Epoch 8: Loss(train): 0.064400 Loss(val): 0.065635
- [18:09:56] Epoch 10: Loss(train): 0.062374 Loss(val): 0.062887
- [18:10:24] Epoch 12: Loss(train): 0.062486 Loss(val): 0.061977
- [18:10:52] Epoch 14: Loss(train): 0.060712 Loss(val): 0.060443
- [18:11:20] Epoch 16: Loss(train): 0.059088 Loss(val): 0.059083
- [18:11:51] Epoch 18: Loss(train): 0.058101 Loss(val): 0.058331
- [18:12:19] Epoch 20: Loss(train): 0.057148 Loss(val): 0.057508
- [18:12:51] Epoch 22: Loss(train): 0.055926 Loss(val): 0.056367
- [18:13:19] Epoch 24: Loss(train): 0.055365 Loss(val): 0.055971
- [18:13:47] Epoch 26: Loss(train): 0.054611 Loss(val): 0.055201
- [18:14:15] Epoch 28: Loss(train): 0.053842 Loss(val): 0.054555
- [18:14:44] Epoch 30: Loss(train): 0.053042 Loss(val): 0.053763
- [18:15:19] Epoch 32: Loss(train): 0.052779 Loss(val): 0.053499
- [18:15:47] Epoch 34: Loss(train): 0.052054 Loss(val): 0.052898
- [18:16:15] Epoch 36: Loss(train): 0.051787 Loss(val): 0.052560
- [18:16:43] Epoch 38: Loss(train): 0.051411 Loss(val): 0.052254
- [18:17:11] Epoch 40: Loss(train): 0.051067 Loss(val): 0.051975
- [18:17:14] FINAL(40) Loss(val): 0.051975 Accuarcy: 0.638027
- Search 2 of 500
- momentum0.98, features=[64, 64, 64], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
- [18:17:28] INIT Loss(val): 0.153462 Accuarcy: 0.102959
- [18:17:59] Epoch 2: Loss(train): 0.075035 Loss(val): 0.075419
- [18:18:28] Epoch 4: Loss(train): 0.070219 Loss(val): 0.071059
- [18:18:56] Epoch 6: Loss(train): 0.066796 Loss(val): 0.068081
- [18:19:26] Epoch 8: Loss(train): 0.064382 Loss(val): 0.066310
- [18:19:55] Epoch 10: Loss(train): 0.062338 Loss(val): 0.063341
- [18:20:24] Epoch 12: Loss(train): 0.062264 Loss(val): 0.062503
- [18:20:52] Epoch 14: Loss(train): 0.060864 Loss(val): 0.061372
- [18:21:21] Epoch 16: Loss(train): 0.059382 Loss(val): 0.060050
- [18:21:49] Epoch 18: Loss(train): 0.058139 Loss(val): 0.058792
- [18:22:18] Epoch 20: Loss(train): 0.057172 Loss(val): 0.057924
- [18:22:48] Epoch 22: Loss(train): 0.056341 Loss(val): 0.057077
- [18:23:17] Epoch 24: Loss(train): 0.055905 Loss(val): 0.056701
- [18:23:45] Epoch 26: Loss(train): 0.055191 Loss(val): 0.056047
- [18:24:14] Epoch 28: Loss(train): 0.054708 Loss(val): 0.055567
- [18:24:43] Epoch 30: Loss(train): 0.054421 Loss(val): 0.055375
- [18:25:11] Epoch 32: Loss(train): 0.054032 Loss(val): 0.054960
- [18:25:41] Epoch 34: Loss(train): 0.053697 Loss(val): 0.054623
- [18:26:10] Epoch 36: Loss(train): 0.053191 Loss(val): 0.054077
- [18:26:39] Epoch 38: Loss(train): 0.052736 Loss(val): 0.053705
- [18:27:08] Epoch 40: Loss(train): 0.052341 Loss(val): 0.053276
- [18:27:11] FINAL(40) Loss(val): 0.053276 Accuarcy: 0.613299
- Search 3 of 500
- momentum0.94, features=[32, 64, 128], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=1.0
- [18:27:25] INIT Loss(val): 0.162784 Accuarcy: 0.093435
- [18:27:57] Epoch 2: Loss(train): 0.074868 Loss(val): 0.075268
- [18:28:26] Epoch 4: Loss(train): 0.068138 Loss(val): 0.068649
- [18:28:55] Epoch 6: Loss(train): 0.064977 Loss(val): 0.065487
- [18:29:24] Epoch 8: Loss(train): 0.063515 Loss(val): 0.063438
- [18:29:53] Epoch 10: Loss(train): 0.063088 Loss(val): 0.062578
- [18:30:22] Epoch 12: Loss(train): 0.061802 Loss(val): 0.061483
- [18:30:51] Epoch 14: Loss(train): 0.060184 Loss(val): 0.060016
- [18:31:21] Epoch 16: Loss(train): 0.058834 Loss(val): 0.058876
- [18:31:50] Epoch 18: Loss(train): 0.057796 Loss(val): 0.057980
- [18:32:19] Epoch 20: Loss(train): 0.057109 Loss(val): 0.057453
- [18:32:48] Epoch 22: Loss(train): 0.056280 Loss(val): 0.056685
- [18:33:17] Epoch 24: Loss(train): 0.055541 Loss(val): 0.055949
- [18:33:46] Epoch 26: Loss(train): 0.054714 Loss(val): 0.055165
- [18:34:15] Epoch 28: Loss(train): 0.054159 Loss(val): 0.054650
- [18:34:45] Epoch 30: Loss(train): 0.053510 Loss(val): 0.054028
- [18:35:15] Epoch 32: Loss(train): 0.053212 Loss(val): 0.053752
- [18:35:44] Epoch 34: Loss(train): 0.052627 Loss(val): 0.053269
- [18:36:14] Epoch 36: Loss(train): 0.052508 Loss(val): 0.053079
- [18:36:43] Epoch 38: Loss(train): 0.051985 Loss(val): 0.052550
- [18:37:13] Epoch 40: Loss(train): 0.051785 Loss(val): 0.052311
- [18:37:16] FINAL(40) Loss(val): 0.052311 Accuarcy: 0.634133
- Search 4 of 500
- momentum0.98, features=[32, 32, 32], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
- [18:37:31] INIT Loss(val): 0.134779 Accuarcy: 0.095527
- [18:38:04] Epoch 2: Loss(train): 0.078241 Loss(val): 0.079199
- [18:38:33] Epoch 4: Loss(train): 0.070412 Loss(val): 0.072017
- [18:39:04] Epoch 6: Loss(train): 0.066808 Loss(val): 0.068458
- [18:39:34] Epoch 8: Loss(train): 0.063924 Loss(val): 0.065181
- [18:40:05] Epoch 10: Loss(train): 0.064103 Loss(val): 0.063963
- [18:40:35] Epoch 12: Loss(train): 0.062526 Loss(val): 0.062825
- [18:41:05] Epoch 14: Loss(train): 0.060927 Loss(val): 0.061415
- [18:41:35] Epoch 16: Loss(train): 0.059985 Loss(val): 0.060562
- [18:42:05] Epoch 18: Loss(train): 0.058566 Loss(val): 0.059268
- [18:42:36] Epoch 20: Loss(train): 0.057687 Loss(val): 0.058355
- [18:43:05] Epoch 22: Loss(train): 0.056681 Loss(val): 0.057413
- [18:43:36] Epoch 24: Loss(train): 0.055931 Loss(val): 0.056701
- [18:44:07] Epoch 26: Loss(train): 0.055389 Loss(val): 0.056172
- [18:44:37] Epoch 28: Loss(train): 0.054791 Loss(val): 0.055668
- [18:45:07] Epoch 30: Loss(train): 0.054420 Loss(val): 0.055324
- [18:45:38] Epoch 32: Loss(train): 0.053756 Loss(val): 0.054584
- [18:46:09] Epoch 34: Loss(train): 0.053215 Loss(val): 0.054125
- [18:46:39] Epoch 36: Loss(train): 0.052708 Loss(val): 0.053595
- [18:47:10] Epoch 38: Loss(train): 0.052368 Loss(val): 0.053279
- [18:47:40] Epoch 40: Loss(train): 0.051784 Loss(val): 0.052760
- [18:47:44] FINAL(40) Loss(val): 0.052760 Accuarcy: 0.623980
- Search 5 of 500
- momentum0.96, features=[32, 64, 128], dropout_rate=0.8
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.01
- [18:47:58] INIT Loss(val): 0.138354 Accuarcy: 0.100289
- [18:48:33] Epoch 2: Loss(train): 0.075274 Loss(val): 0.075726
- [18:49:04] Epoch 4: Loss(train): 0.067656 Loss(val): 0.068969
- [18:49:35] Epoch 6: Loss(train): 0.064109 Loss(val): 0.065550
- [18:50:05] Epoch 8: Loss(train): 0.062007 Loss(val): 0.063224
- [18:50:35] Epoch 10: Loss(train): 0.060712 Loss(val): 0.060455
- [18:51:06] Epoch 12: Loss(train): 0.060152 Loss(val): 0.059586
- [18:51:38] Epoch 14: Loss(train): 0.058922 Loss(val): 0.058455
- [18:52:10] Epoch 16: Loss(train): 0.057797 Loss(val): 0.057439
- [18:52:41] Epoch 18: Loss(train): 0.056685 Loss(val): 0.056471
- [18:53:11] Epoch 20: Loss(train): 0.056109 Loss(val): 0.055995
- [18:53:43] Epoch 22: Loss(train): 0.055229 Loss(val): 0.055187
- [18:54:14] Epoch 24: Loss(train): 0.054637 Loss(val): 0.054621
- [18:54:46] Epoch 26: Loss(train): 0.054068 Loss(val): 0.054110
- [18:55:17] Epoch 28: Loss(train): 0.053452 Loss(val): 0.053568
- [18:55:47] Epoch 30: Loss(train): 0.052814 Loss(val): 0.053036
- [18:56:18] Epoch 32: Loss(train): 0.052657 Loss(val): 0.052841
- [18:56:55] Epoch 34: Loss(train): 0.052147 Loss(val): 0.052422
- [18:57:28] Epoch 36: Loss(train): 0.051882 Loss(val): 0.052147
- [18:58:00] Epoch 38: Loss(train): 0.051624 Loss(val): 0.051983
- [18:58:33] Epoch 40: Loss(train): 0.051157 Loss(val): 0.051610
- [18:58:36] FINAL(40) Loss(val): 0.051610 Accuarcy: 0.654694
- Search 6 of 500
- momentum0.9, features=[64, 64, 64], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.1
- [18:58:51] INIT Loss(val): 0.137227 Accuarcy: 0.089082
- [18:59:25] Epoch 2: Loss(train): 0.076255 Loss(val): 0.077085
- [18:59:58] Epoch 4: Loss(train): 0.069647 Loss(val): 0.070416
- [19:00:30] Epoch 6: Loss(train): 0.066060 Loss(val): 0.066870
- [19:01:03] Epoch 8: Loss(train): 0.063875 Loss(val): 0.064680
- [19:01:36] Epoch 10: Loss(train): 0.061816 Loss(val): 0.062256
- [19:02:07] Epoch 12: Loss(train): 0.062256 Loss(val): 0.061819
- [19:02:39] Epoch 14: Loss(train): 0.060937 Loss(val): 0.060642
- [19:03:10] Epoch 16: Loss(train): 0.059295 Loss(val): 0.059192
- [19:03:43] Epoch 18: Loss(train): 0.058088 Loss(val): 0.058086
- [19:04:15] Epoch 20: Loss(train): 0.057366 Loss(val): 0.057583
- [19:04:48] Epoch 22: Loss(train): 0.056409 Loss(val): 0.056883
- [19:05:20] Epoch 24: Loss(train): 0.055725 Loss(val): 0.056264
- [19:05:54] Epoch 26: Loss(train): 0.055122 Loss(val): 0.055765
- [19:06:26] Epoch 28: Loss(train): 0.054427 Loss(val): 0.055090
- [19:06:58] Epoch 30: Loss(train): 0.053994 Loss(val): 0.054728
- [19:07:30] Epoch 32: Loss(train): 0.053254 Loss(val): 0.054063
- [19:08:02] Epoch 34: Loss(train): 0.052780 Loss(val): 0.053672
- [19:08:34] Epoch 36: Loss(train): 0.052507 Loss(val): 0.053308
- [19:09:06] Epoch 38: Loss(train): 0.052088 Loss(val): 0.052931
- [19:09:38] Epoch 40: Loss(train): 0.051752 Loss(val): 0.052681
- [19:09:41] FINAL(40) Loss(val): 0.052681 Accuarcy: 0.620153
- Search 7 of 500
- momentum0.96, features=[64, 64, 64], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
- [19:09:56] INIT Loss(val): 0.129805 Accuarcy: 0.096088
- [19:10:31] Epoch 2: Loss(train): 0.078690 Loss(val): 0.079806
- [19:11:03] Epoch 4: Loss(train): 0.068390 Loss(val): 0.069582
- [19:11:34] Epoch 6: Loss(train): 0.065949 Loss(val): 0.067527
- [19:12:06] Epoch 8: Loss(train): 0.063865 Loss(val): 0.065614
- [19:12:37] Epoch 10: Loss(train): 0.061512 Loss(val): 0.062654
- [19:13:09] Epoch 12: Loss(train): 0.061305 Loss(val): 0.061241
- [19:13:41] Epoch 14: Loss(train): 0.060556 Loss(val): 0.060605
- [19:14:14] Epoch 16: Loss(train): 0.059072 Loss(val): 0.059439
- [19:14:46] Epoch 18: Loss(train): 0.057793 Loss(val): 0.058227
- [19:15:19] Epoch 20: Loss(train): 0.057246 Loss(val): 0.057806
- [19:15:51] Epoch 22: Loss(train): 0.056266 Loss(val): 0.056918
- [19:16:24] Epoch 24: Loss(train): 0.055712 Loss(val): 0.056347
- [19:16:56] Epoch 26: Loss(train): 0.055176 Loss(val): 0.055786
- [19:17:28] Epoch 28: Loss(train): 0.054897 Loss(val): 0.055550
- [19:18:01] Epoch 30: Loss(train): 0.054363 Loss(val): 0.055041
- [19:18:35] Epoch 32: Loss(train): 0.053887 Loss(val): 0.054487
- [19:19:08] Epoch 34: Loss(train): 0.053423 Loss(val): 0.054010
- [19:19:41] Epoch 36: Loss(train): 0.053153 Loss(val): 0.053742
- [19:20:13] Epoch 38: Loss(train): 0.052864 Loss(val): 0.053482
- [19:20:46] Epoch 40: Loss(train): 0.052327 Loss(val): 0.052950
- [19:20:49] FINAL(40) Loss(val): 0.052950 Accuarcy: 0.619643
- Search 8 of 500
- momentum0.94, features=[32, 64, 128], dropout_rate=0.8
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.1
- [19:21:05] INIT Loss(val): 0.126856 Accuarcy: 0.097840
- [19:21:42] Epoch 2: Loss(train): 0.076776 Loss(val): 0.077285
- [19:22:15] Epoch 4: Loss(train): 0.069062 Loss(val): 0.070340
- [19:22:48] Epoch 6: Loss(train): 0.066273 Loss(val): 0.068127
- [19:23:22] Epoch 8: Loss(train): 0.063386 Loss(val): 0.064870
- [19:23:55] Epoch 10: Loss(train): 0.062181 Loss(val): 0.061876
- [19:24:29] Epoch 12: Loss(train): 0.060695 Loss(val): 0.060278
- [19:25:03] Epoch 14: Loss(train): 0.059365 Loss(val): 0.059288
- [19:25:36] Epoch 16: Loss(train): 0.058426 Loss(val): 0.058403
- [19:26:09] Epoch 18: Loss(train): 0.057446 Loss(val): 0.057615
- [19:26:41] Epoch 20: Loss(train): 0.056655 Loss(val): 0.056790
- [19:27:15] Epoch 22: Loss(train): 0.056013 Loss(val): 0.056254
- [19:27:49] Epoch 24: Loss(train): 0.055537 Loss(val): 0.055781
- [19:28:21] Epoch 26: Loss(train): 0.055158 Loss(val): 0.055334
- [19:28:54] Epoch 28: Loss(train): 0.054319 Loss(val): 0.054558
- [19:29:27] Epoch 30: Loss(train): 0.054050 Loss(val): 0.054258
- [19:30:00] Epoch 32: Loss(train): 0.053499 Loss(val): 0.053745
- [19:30:33] Epoch 34: Loss(train): 0.053151 Loss(val): 0.053429
- [19:31:07] Epoch 36: Loss(train): 0.052711 Loss(val): 0.052953
- [19:31:40] Epoch 38: Loss(train): 0.052423 Loss(val): 0.052699
- [19:32:14] Epoch 40: Loss(train): 0.052046 Loss(val): 0.052357
- [19:32:18] FINAL(40) Loss(val): 0.052357 Accuarcy: 0.630391
- Search 9 of 500
- momentum0.94, features=[32, 32, 32], dropout_rate=0.8
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
- [19:32:34] INIT Loss(val): 0.131642 Accuarcy: 0.090017
- [19:33:10] Epoch 2: Loss(train): 0.076535 Loss(val): 0.077012
- [19:33:44] Epoch 4: Loss(train): 0.068991 Loss(val): 0.070012
- [19:34:17] Epoch 6: Loss(train): 0.066681 Loss(val): 0.068178
- [19:34:52] Epoch 8: Loss(train): 0.063801 Loss(val): 0.065194
- [19:35:27] Epoch 10: Loss(train): 0.062749 Loss(val): 0.062579
- [19:36:03] Epoch 12: Loss(train): 0.061396 Loss(val): 0.061188
- [19:36:36] Epoch 14: Loss(train): 0.059828 Loss(val): 0.059840
- [19:37:09] Epoch 16: Loss(train): 0.058267 Loss(val): 0.058412
- [19:37:42] Epoch 18: Loss(train): 0.056997 Loss(val): 0.057319
- [19:38:17] Epoch 20: Loss(train): 0.056212 Loss(val): 0.056592
- [19:38:51] Epoch 22: Loss(train): 0.055699 Loss(val): 0.056120
- [19:39:25] Epoch 24: Loss(train): 0.055265 Loss(val): 0.055732
- [19:40:00] Epoch 26: Loss(train): 0.054956 Loss(val): 0.055544
- [19:40:35] Epoch 28: Loss(train): 0.054316 Loss(val): 0.054904
- [19:41:09] Epoch 30: Loss(train): 0.053904 Loss(val): 0.054533
- [19:41:42] Epoch 32: Loss(train): 0.053655 Loss(val): 0.054287
- [19:42:16] Epoch 34: Loss(train): 0.053000 Loss(val): 0.053676
- [19:42:50] Epoch 36: Loss(train): 0.052240 Loss(val): 0.053027
- [19:43:24] Epoch 38: Loss(train): 0.051914 Loss(val): 0.052626
- [19:43:59] Epoch 40: Loss(train): 0.051464 Loss(val): 0.052201
- [19:44:02] FINAL(40) Loss(val): 0.052201 Accuarcy: 0.634864
- Search 10 of 500
- momentum0.94, features=[32, 32, 32], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.3
- [19:44:18] INIT Loss(val): 0.147838 Accuarcy: 0.096224
- [19:44:56] Epoch 2: Loss(train): 0.073673 Loss(val): 0.074037
- [19:45:29] Epoch 4: Loss(train): 0.066077 Loss(val): 0.066764
- [19:46:04] Epoch 6: Loss(train): 0.063749 Loss(val): 0.064495
- [19:46:39] Epoch 8: Loss(train): 0.061897 Loss(val): 0.062830
- [19:47:13] Epoch 10: Loss(train): 0.059758 Loss(val): 0.059846
- [19:47:47] Epoch 12: Loss(train): 0.060317 Loss(val): 0.059947
- [19:48:20] Epoch 14: Loss(train): 0.059522 Loss(val): 0.059213
- [19:48:55] Epoch 16: Loss(train): 0.058307 Loss(val): 0.058215
- [19:49:29] Epoch 18: Loss(train): 0.057684 Loss(val): 0.057823
- [19:50:03] Epoch 20: Loss(train): 0.056430 Loss(val): 0.056712
- [19:50:37] Epoch 22: Loss(train): 0.055679 Loss(val): 0.056159
- [19:51:12] Epoch 24: Loss(train): 0.055052 Loss(val): 0.055606
- [19:51:53] Epoch 26: Loss(train): 0.054097 Loss(val): 0.054759
- [19:52:54] Epoch 28: Loss(train): 0.053659 Loss(val): 0.054303
- [19:53:57] Epoch 30: Loss(train): 0.053202 Loss(val): 0.053859
- [19:55:01] Epoch 32: Loss(train): 0.052676 Loss(val): 0.053317
- [19:56:05] Epoch 34: Loss(train): 0.052394 Loss(val): 0.053083
- [19:57:09] Epoch 36: Loss(train): 0.051938 Loss(val): 0.052596
- [19:58:14] Epoch 38: Loss(train): 0.051952 Loss(val): 0.052589
- [19:59:18] Epoch 40: Loss(train): 0.051624 Loss(val): 0.052260
- [19:59:27] FINAL(40) Loss(val): 0.052260 Accuarcy: 0.640425
- Search 11 of 500
- momentum0.94, features=[32, 64, 128], dropout_rate=0.8
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
- [20:00:05] INIT Loss(val): 0.128097 Accuarcy: 0.100561
- [20:01:16] Epoch 2: Loss(train): 0.076811 Loss(val): 0.077396
- [20:02:46] Epoch 4: Loss(train): 0.067419 Loss(val): 0.068027
- [20:03:52] Epoch 6: Loss(train): 0.064314 Loss(val): 0.064847
- [20:05:02] Epoch 8: Loss(train): 0.062622 Loss(val): 0.063239
- [20:06:05] Epoch 10: Loss(train): 0.062587 Loss(val): 0.061918
- [20:07:18] Epoch 12: Loss(train): 0.062067 Loss(val): 0.061365
- [20:08:35] Epoch 14: Loss(train): 0.060435 Loss(val): 0.059998
- [20:09:40] Epoch 16: Loss(train): 0.059291 Loss(val): 0.059136
- [20:10:47] Epoch 18: Loss(train): 0.058127 Loss(val): 0.058230
- [20:11:56] Epoch 20: Loss(train): 0.057044 Loss(val): 0.057275
- [20:13:07] Epoch 22: Loss(train): 0.056308 Loss(val): 0.056648
- [20:14:12] Epoch 24: Loss(train): 0.055546 Loss(val): 0.055942
- [20:15:17] Epoch 26: Loss(train): 0.054920 Loss(val): 0.055446
- [20:16:23] Epoch 28: Loss(train): 0.054230 Loss(val): 0.054767
- [20:17:29] Epoch 30: Loss(train): 0.053606 Loss(val): 0.054120
- [20:18:38] Epoch 32: Loss(train): 0.053080 Loss(val): 0.053653
- [20:19:46] Epoch 34: Loss(train): 0.052750 Loss(val): 0.053295
- [20:20:56] Epoch 36: Loss(train): 0.052336 Loss(val): 0.052997
- [20:22:03] Epoch 38: Loss(train): 0.052112 Loss(val): 0.052736
- [20:23:12] Epoch 40: Loss(train): 0.051778 Loss(val): 0.052454
- [20:23:21] FINAL(40) Loss(val): 0.052454 Accuarcy: 0.635867
- Search 12 of 500
- momentum0.98, features=[64, 64, 64], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
- [20:24:00] INIT Loss(val): 0.148256 Accuarcy: 0.087296
- [20:25:12] Epoch 2: Loss(train): 0.079662 Loss(val): 0.080293
- [20:26:18] Epoch 4: Loss(train): 0.070002 Loss(val): 0.070702
- [20:27:29] Epoch 6: Loss(train): 0.067117 Loss(val): 0.068561
- [20:28:37] Epoch 8: Loss(train): 0.064559 Loss(val): 0.066135
- [20:29:44] Epoch 10: Loss(train): 0.062571 Loss(val): 0.062898
- [20:30:51] Epoch 12: Loss(train): 0.061983 Loss(val): 0.062073
- [20:31:58] Epoch 14: Loss(train): 0.060905 Loss(val): 0.061123
- [20:33:04] Epoch 16: Loss(train): 0.059509 Loss(val): 0.059778
- [20:34:11] Epoch 18: Loss(train): 0.058631 Loss(val): 0.058973
- [20:35:21] Epoch 20: Loss(train): 0.057901 Loss(val): 0.058287
- [20:36:31] Epoch 22: Loss(train): 0.057311 Loss(val): 0.057726
- [20:37:40] Epoch 24: Loss(train): 0.056381 Loss(val): 0.056801
- [20:38:48] Epoch 26: Loss(train): 0.055594 Loss(val): 0.056158
- [20:39:55] Epoch 28: Loss(train): 0.055280 Loss(val): 0.055773
- [20:41:04] Epoch 30: Loss(train): 0.054724 Loss(val): 0.055232
- [20:42:15] Epoch 32: Loss(train): 0.054286 Loss(val): 0.054696
- [20:43:23] Epoch 34: Loss(train): 0.054172 Loss(val): 0.054566
- [20:44:34] Epoch 36: Loss(train): 0.053554 Loss(val): 0.053958
- [20:45:45] Epoch 38: Loss(train): 0.053425 Loss(val): 0.053765
- Early stopping with Loss(train) 0.054845 at epoch 38 (Accuracy: 0.584490)
- Search 13 of 500
- momentum0.99, features=[32, 32, 32], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
- [20:46:34] INIT Loss(val): 0.140461 Accuarcy: 0.104388
- [20:47:52] Epoch 2: Loss(train): 0.076866 Loss(val): 0.076988
- [20:49:05] Epoch 4: Loss(train): 0.068130 Loss(val): 0.069167
- [20:50:14] Epoch 6: Loss(train): 0.064605 Loss(val): 0.065783
- [20:51:26] Epoch 8: Loss(train): 0.062285 Loss(val): 0.063043
- [20:52:39] Epoch 10: Loss(train): 0.061567 Loss(val): 0.061103
- [20:53:52] Epoch 12: Loss(train): 0.060784 Loss(val): 0.060254
- [20:55:15] Epoch 14: Loss(train): 0.059443 Loss(val): 0.059142
- [20:56:25] Epoch 16: Loss(train): 0.058249 Loss(val): 0.058051
- [20:57:36] Epoch 18: Loss(train): 0.057259 Loss(val): 0.057268
- [20:58:51] Epoch 20: Loss(train): 0.056265 Loss(val): 0.056417
- [21:00:38] Epoch 22: Loss(train): 0.055420 Loss(val): 0.055663
- [21:02:37] Epoch 24: Loss(train): 0.054498 Loss(val): 0.054781
- [21:04:27] Epoch 26: Loss(train): 0.054194 Loss(val): 0.054544
- [21:06:17] Epoch 28: Loss(train): 0.053792 Loss(val): 0.054235
- [21:07:45] Epoch 30: Loss(train): 0.053412 Loss(val): 0.053891
- [21:09:00] Epoch 32: Loss(train): 0.052879 Loss(val): 0.053408
- [21:10:13] Epoch 34: Loss(train): 0.052690 Loss(val): 0.053264
- [21:11:49] Epoch 36: Loss(train): 0.052348 Loss(val): 0.052886
- [21:13:17] Epoch 38: Loss(train): 0.052192 Loss(val): 0.052790
- [21:14:31] Epoch 40: Loss(train): 0.051947 Loss(val): 0.052624
- [21:14:41] FINAL(40) Loss(val): 0.052624 Accuarcy: 0.635612
- Search 14 of 500
- momentum0.94, features=[64, 64, 64], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
- [21:15:24] INIT Loss(val): 0.140948 Accuarcy: 0.090221
- [21:16:49] Epoch 2: Loss(train): 0.073946 Loss(val): 0.074002
- [21:18:12] Epoch 4: Loss(train): 0.067837 Loss(val): 0.068280
- [21:19:25] Epoch 6: Loss(train): 0.065246 Loss(val): 0.066273
- [21:20:41] Epoch 8: Loss(train): 0.062865 Loss(val): 0.064018
- [21:21:56] Epoch 10: Loss(train): 0.060457 Loss(val): 0.061356
- [21:23:07] Epoch 12: Loss(train): 0.060426 Loss(val): 0.060503
- [21:24:19] Epoch 14: Loss(train): 0.059488 Loss(val): 0.059690
- [21:25:30] Epoch 16: Loss(train): 0.058704 Loss(val): 0.059006
- [21:26:42] Epoch 18: Loss(train): 0.057890 Loss(val): 0.058259
- [21:27:56] Epoch 20: Loss(train): 0.056893 Loss(val): 0.057368
- [21:29:09] Epoch 22: Loss(train): 0.056089 Loss(val): 0.056659
- [21:30:30] Epoch 24: Loss(train): 0.055805 Loss(val): 0.056313
- [21:32:29] Epoch 26: Loss(train): 0.055030 Loss(val): 0.055562
- [21:34:07] Epoch 28: Loss(train): 0.054475 Loss(val): 0.055053
- [21:35:34] Epoch 30: Loss(train): 0.053939 Loss(val): 0.054514
- [21:37:03] Epoch 32: Loss(train): 0.053544 Loss(val): 0.054175
- [21:38:43] Epoch 34: Loss(train): 0.053206 Loss(val): 0.053755
- [21:40:20] Epoch 36: Loss(train): 0.052790 Loss(val): 0.053353
- [21:41:49] Epoch 38: Loss(train): 0.052477 Loss(val): 0.053059
- [21:43:08] Epoch 40: Loss(train): 0.052117 Loss(val): 0.052704
- [21:43:19] FINAL(40) Loss(val): 0.052704 Accuarcy: 0.630085
- Search 15 of 500
- momentum0.98, features=[96, 192, 192], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=1.0
- [21:44:07] INIT Loss(val): 0.128062 Accuarcy: 0.099609
- [21:45:40] Epoch 2: Loss(train): 0.076486 Loss(val): 0.076834
- [21:47:06] Epoch 4: Loss(train): 0.069786 Loss(val): 0.070414
- [21:48:20] Epoch 6: Loss(train): 0.066293 Loss(val): 0.067163
- [21:49:39] Epoch 8: Loss(train): 0.064205 Loss(val): 0.065383
- [21:51:00] Epoch 10: Loss(train): 0.062865 Loss(val): 0.063068
- [21:52:18] Epoch 12: Loss(train): 0.062064 Loss(val): 0.062093
- [21:53:34] Epoch 14: Loss(train): 0.060184 Loss(val): 0.060345
- [21:54:52] Epoch 16: Loss(train): 0.058316 Loss(val): 0.058735
- [21:56:08] Epoch 18: Loss(train): 0.057090 Loss(val): 0.057527
- [21:57:26] Epoch 20: Loss(train): 0.056003 Loss(val): 0.056649
- [21:58:44] Epoch 22: Loss(train): 0.055251 Loss(val): 0.056051
- [22:00:01] Epoch 24: Loss(train): 0.054980 Loss(val): 0.055802
- [22:01:34] Epoch 26: Loss(train): 0.054432 Loss(val): 0.055166
- [22:03:15] Epoch 28: Loss(train): 0.054014 Loss(val): 0.054775
- [22:04:48] Epoch 30: Loss(train): 0.053364 Loss(val): 0.054182
- [22:06:32] Epoch 32: Loss(train): 0.053011 Loss(val): 0.053829
- [22:08:16] Epoch 34: Loss(train): 0.052472 Loss(val): 0.053219
- [22:09:45] Epoch 36: Loss(train): 0.052156 Loss(val): 0.052837
- [22:11:13] Epoch 38: Loss(train): 0.051691 Loss(val): 0.052349
- [22:12:40] Epoch 40: Loss(train): 0.051328 Loss(val): 0.051960
- [22:12:53] FINAL(40) Loss(val): 0.051960 Accuarcy: 0.644507
- Search 16 of 500
- momentum0.96, features=[96, 192, 192], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=1.0
- [22:13:50] INIT Loss(val): 0.155339 Accuarcy: 0.101888
- [22:15:19] Epoch 2: Loss(train): 0.076373 Loss(val): 0.077512
- [22:16:45] Epoch 4: Loss(train): 0.069962 Loss(val): 0.071391
- [22:18:07] Epoch 6: Loss(train): 0.066614 Loss(val): 0.067830
- [22:19:30] Epoch 8: Loss(train): 0.063646 Loss(val): 0.064866
- [22:20:51] Epoch 10: Loss(train): 0.061357 Loss(val): 0.061409
- [22:22:11] Epoch 12: Loss(train): 0.060890 Loss(val): 0.060584
- [22:23:32] Epoch 14: Loss(train): 0.060370 Loss(val): 0.060146
- [22:24:51] Epoch 16: Loss(train): 0.058836 Loss(val): 0.059034
- [22:26:09] Epoch 18: Loss(train): 0.058080 Loss(val): 0.058426
- [22:27:31] Epoch 20: Loss(train): 0.056827 Loss(val): 0.057453
- [22:28:50] Epoch 22: Loss(train): 0.055707 Loss(val): 0.056433
- [22:30:10] Epoch 24: Loss(train): 0.055046 Loss(val): 0.055827
- [22:31:48] Epoch 26: Loss(train): 0.054370 Loss(val): 0.055342
- [22:33:53] Epoch 28: Loss(train): 0.053903 Loss(val): 0.054847
- [22:35:30] Epoch 30: Loss(train): 0.053405 Loss(val): 0.054422
- [22:37:03] Epoch 32: Loss(train): 0.053015 Loss(val): 0.054073
- [22:38:31] Epoch 34: Loss(train): 0.052485 Loss(val): 0.053563
- [22:40:20] Epoch 36: Loss(train): 0.052231 Loss(val): 0.053308
- [22:41:44] Epoch 38: Loss(train): 0.051928 Loss(val): 0.053000
- [22:43:16] Epoch 40: Loss(train): 0.051724 Loss(val): 0.052842
- [22:43:29] FINAL(40) Loss(val): 0.052842 Accuarcy: 0.618367
- Search 17 of 500
- momentum0.9, features=[96, 192, 192], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.3
- [22:44:29] INIT Loss(val): 0.140444 Accuarcy: 0.087840
- [22:45:59] Epoch 2: Loss(train): 0.077613 Loss(val): 0.077837
- [22:47:22] Epoch 4: Loss(train): 0.069080 Loss(val): 0.069612
- [22:48:55] Epoch 6: Loss(train): 0.065800 Loss(val): 0.066876
- [22:50:25] Epoch 8: Loss(train): 0.064667 Loss(val): 0.066089
- [22:51:52] Epoch 10: Loss(train): 0.062540 Loss(val): 0.063536
- [22:53:13] Epoch 12: Loss(train): 0.062173 Loss(val): 0.062304
- [22:54:37] Epoch 14: Loss(train): 0.060266 Loss(val): 0.060558
- [22:56:00] Epoch 16: Loss(train): 0.059095 Loss(val): 0.059716
- Early stopping with Loss(train) 0.060400 at epoch 17 (Accuracy: 0.520408)
- Search 18 of 500
- momentum0.9, features=[32, 32, 32], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
- [22:57:35] INIT Loss(val): 0.122866 Accuarcy: 0.100969
- [22:59:04] Epoch 2: Loss(train): 0.083609 Loss(val): 0.083896
- [23:00:25] Epoch 4: Loss(train): 0.071636 Loss(val): 0.072329
- [23:01:49] Epoch 6: Loss(train): 0.068079 Loss(val): 0.068947
- [23:03:15] Epoch 8: Loss(train): 0.064902 Loss(val): 0.065714
- [23:05:29] Epoch 10: Loss(train): 0.064068 Loss(val): 0.063601
- [23:07:25] Epoch 12: Loss(train): 0.062458 Loss(val): 0.062049
- [23:09:11] Epoch 14: Loss(train): 0.061018 Loss(val): 0.060821
- [23:11:11] Epoch 16: Loss(train): 0.059970 Loss(val): 0.060042
- [23:12:45] Epoch 18: Loss(train): 0.059173 Loss(val): 0.059317
- [23:14:32] Epoch 20: Loss(train): 0.058569 Loss(val): 0.058824
- [23:16:06] Epoch 22: Loss(train): 0.057706 Loss(val): 0.058048
- [23:17:38] Epoch 24: Loss(train): 0.057017 Loss(val): 0.057352
- [23:19:03] Epoch 26: Loss(train): 0.056235 Loss(val): 0.056608
- [23:20:39] Epoch 28: Loss(train): 0.055231 Loss(val): 0.055639
- [23:22:06] Epoch 30: Loss(train): 0.054434 Loss(val): 0.054796
- [23:23:38] Epoch 32: Loss(train): 0.053868 Loss(val): 0.054278
- [23:25:03] Epoch 34: Loss(train): 0.053368 Loss(val): 0.053715
- [23:26:29] Epoch 36: Loss(train): 0.052716 Loss(val): 0.053143
- [23:27:56] Epoch 38: Loss(train): 0.052115 Loss(val): 0.052569
- [23:29:22] Epoch 40: Loss(train): 0.051541 Loss(val): 0.052065
- [23:29:35] FINAL(40) Loss(val): 0.052065 Accuarcy: 0.634830
- Search 19 of 500
- momentum0.94, features=[96, 192, 192], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.03
- [23:30:26] INIT Loss(val): 0.144806 Accuarcy: 0.112262
- [23:31:59] Epoch 2: Loss(train): 0.074827 Loss(val): 0.075901
- [23:33:26] Epoch 4: Loss(train): 0.068091 Loss(val): 0.069344
- [23:35:18] Epoch 6: Loss(train): 0.065056 Loss(val): 0.066292
- [23:37:15] Epoch 8: Loss(train): 0.063074 Loss(val): 0.064072
- [23:39:25] Epoch 10: Loss(train): 0.063645 Loss(val): 0.063041
- [23:41:05] Epoch 12: Loss(train): 0.061954 Loss(val): 0.061517
- [23:42:54] Epoch 14: Loss(train): 0.060315 Loss(val): 0.060035
- [23:44:37] Epoch 16: Loss(train): 0.058829 Loss(val): 0.058677
- [23:46:22] Epoch 18: Loss(train): 0.057952 Loss(val): 0.058050
- [23:48:02] Epoch 20: Loss(train): 0.056611 Loss(val): 0.056781
- [23:49:36] Epoch 22: Loss(train): 0.055679 Loss(val): 0.056027
- [23:51:07] Epoch 24: Loss(train): 0.054832 Loss(val): 0.055280
- [23:52:42] Epoch 26: Loss(train): 0.053982 Loss(val): 0.054524
- [23:54:12] Epoch 28: Loss(train): 0.053434 Loss(val): 0.054000
- [23:55:44] Epoch 30: Loss(train): 0.052832 Loss(val): 0.053443
- [23:57:20] Epoch 32: Loss(train): 0.052402 Loss(val): 0.053045
- [23:58:49] Epoch 34: Loss(train): 0.051839 Loss(val): 0.052468
- [00:00:16] Epoch 36: Loss(train): 0.051443 Loss(val): 0.052053
- [00:01:42] Epoch 38: Loss(train): 0.051110 Loss(val): 0.051693
- [00:03:09] Epoch 40: Loss(train): 0.050843 Loss(val): 0.051443
- [00:03:22] FINAL(40) Loss(val): 0.051443 Accuarcy: 0.653452
- Search 20 of 500
- momentum0.9, features=[64, 64, 64], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
- [00:04:16] INIT Loss(val): 0.149194 Accuarcy: 0.082381
- [00:05:57] Epoch 2: Loss(train): 0.075874 Loss(val): 0.075935
- [00:07:50] Epoch 4: Loss(train): 0.069149 Loss(val): 0.069925
- [00:09:56] Epoch 6: Loss(train): 0.066218 Loss(val): 0.067506
- [00:11:34] Epoch 8: Loss(train): 0.064170 Loss(val): 0.064543
- [00:13:19] Epoch 10: Loss(train): 0.062819 Loss(val): 0.062660
- [00:14:51] Epoch 12: Loss(train): 0.061025 Loss(val): 0.061116
- [00:16:24] Epoch 14: Loss(train): 0.059640 Loss(val): 0.059809
- [00:17:59] Epoch 16: Loss(train): 0.058324 Loss(val): 0.058535
- [00:19:29] Epoch 18: Loss(train): 0.057796 Loss(val): 0.057942
- [00:21:10] Epoch 20: Loss(train): 0.056837 Loss(val): 0.057051
- [00:22:49] Epoch 22: Loss(train): 0.056581 Loss(val): 0.056687
- [00:24:27] Epoch 24: Loss(train): 0.055684 Loss(val): 0.055845
- [00:26:04] Epoch 26: Loss(train): 0.055280 Loss(val): 0.055467
- [00:27:38] Epoch 28: Loss(train): 0.054666 Loss(val): 0.054960
- [00:29:12] Epoch 30: Loss(train): 0.054681 Loss(val): 0.054927
- [00:30:50] Epoch 32: Loss(train): 0.053786 Loss(val): 0.054179
- [00:32:24] Epoch 34: Loss(train): 0.053478 Loss(val): 0.053842
- [00:33:57] Epoch 36: Loss(train): 0.052924 Loss(val): 0.053352
- [00:35:35] Epoch 38: Loss(train): 0.052522 Loss(val): 0.053011
- [00:37:10] Epoch 40: Loss(train): 0.051971 Loss(val): 0.052540
- [00:37:21] FINAL(40) Loss(val): 0.052540 Accuarcy: 0.630085
- Search 21 of 500
- momentum0.92, features=[96, 192, 192], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
- [00:38:18] INIT Loss(val): 0.129994 Accuarcy: 0.091718
- [00:39:56] Epoch 2: Loss(train): 0.078515 Loss(val): 0.079490
- [00:41:28] Epoch 4: Loss(train): 0.070014 Loss(val): 0.071300
- [00:43:03] Epoch 6: Loss(train): 0.066612 Loss(val): 0.067780
- [00:44:45] Epoch 8: Loss(train): 0.063762 Loss(val): 0.065018
- [00:46:24] Epoch 10: Loss(train): 0.061744 Loss(val): 0.062313
- [00:48:00] Epoch 12: Loss(train): 0.061314 Loss(val): 0.060970
- [00:49:35] Epoch 14: Loss(train): 0.059673 Loss(val): 0.059553
- [00:51:11] Epoch 16: Loss(train): 0.058347 Loss(val): 0.058497
- [00:52:47] Epoch 18: Loss(train): 0.057153 Loss(val): 0.057509
- [00:54:24] Epoch 20: Loss(train): 0.056539 Loss(val): 0.057007
- [00:55:59] Epoch 22: Loss(train): 0.055904 Loss(val): 0.056457
- [00:57:37] Epoch 24: Loss(train): 0.055228 Loss(val): 0.055896
- [00:59:20] Epoch 26: Loss(train): 0.054506 Loss(val): 0.055190
- [01:01:02] Epoch 28: Loss(train): 0.054147 Loss(val): 0.054805
- [01:02:39] Epoch 30: Loss(train): 0.053628 Loss(val): 0.054319
- [01:04:21] Epoch 32: Loss(train): 0.053111 Loss(val): 0.053844
- [01:06:04] Epoch 34: Loss(train): 0.052740 Loss(val): 0.053401
- [01:07:48] Epoch 36: Loss(train): 0.052391 Loss(val): 0.053115
- [01:09:25] Epoch 38: Loss(train): 0.052113 Loss(val): 0.052774
- [01:11:02] Epoch 40: Loss(train): 0.051565 Loss(val): 0.052283
- [01:11:16] FINAL(40) Loss(val): 0.052283 Accuarcy: 0.628997
- Search 22 of 500
- momentum0.9, features=[32, 32, 32], dropout_rate=0.8
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
- [01:12:17] INIT Loss(val): 0.135674 Accuarcy: 0.100561
- [01:13:58] Epoch 2: Loss(train): 0.077077 Loss(val): 0.077243
- [01:15:36] Epoch 4: Loss(train): 0.068678 Loss(val): 0.069657
- [01:17:13] Epoch 6: Loss(train): 0.065798 Loss(val): 0.067142
- [01:18:52] Epoch 8: Loss(train): 0.063817 Loss(val): 0.065166
- [01:20:27] Epoch 10: Loss(train): 0.062389 Loss(val): 0.062729
- [01:22:02] Epoch 12: Loss(train): 0.061790 Loss(val): 0.061513
- [01:23:42] Epoch 14: Loss(train): 0.060073 Loss(val): 0.060047
- [01:25:21] Epoch 16: Loss(train): 0.059103 Loss(val): 0.059342
- [01:27:01] Epoch 18: Loss(train): 0.057784 Loss(val): 0.058103
- [01:28:43] Epoch 20: Loss(train): 0.056717 Loss(val): 0.057255
- [01:30:23] Epoch 22: Loss(train): 0.056179 Loss(val): 0.056797
- [01:32:05] Epoch 24: Loss(train): 0.055371 Loss(val): 0.056182
- [01:33:42] Epoch 26: Loss(train): 0.054835 Loss(val): 0.055637
- [01:35:21] Epoch 28: Loss(train): 0.054415 Loss(val): 0.055158
- [01:37:00] Epoch 30: Loss(train): 0.053935 Loss(val): 0.054692
- [01:38:45] Epoch 32: Loss(train): 0.053190 Loss(val): 0.054009
- [01:40:29] Epoch 34: Loss(train): 0.052750 Loss(val): 0.053599
- [01:42:10] Epoch 36: Loss(train): 0.052327 Loss(val): 0.053117
- [01:44:00] Epoch 38: Loss(train): 0.051865 Loss(val): 0.052722
- [01:45:43] Epoch 40: Loss(train): 0.051399 Loss(val): 0.052158
- [01:45:57] FINAL(40) Loss(val): 0.052158 Accuarcy: 0.637602
- Search 23 of 500
- momentum0.94, features=[32, 32, 32], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
- [01:46:59] INIT Loss(val): 0.148260 Accuarcy: 0.107823
- [01:48:51] Epoch 2: Loss(train): 0.076951 Loss(val): 0.077701
- [01:50:32] Epoch 4: Loss(train): 0.069506 Loss(val): 0.070086
- [01:52:13] Epoch 6: Loss(train): 0.066102 Loss(val): 0.066808
- [01:53:53] Epoch 8: Loss(train): 0.063157 Loss(val): 0.064062
- [01:55:33] Epoch 10: Loss(train): 0.061524 Loss(val): 0.062082
- [01:57:10] Epoch 12: Loss(train): 0.061474 Loss(val): 0.061203
- [01:58:53] Epoch 14: Loss(train): 0.061059 Loss(val): 0.060495
- [02:00:30] Epoch 16: Loss(train): 0.060032 Loss(val): 0.059752
- [02:02:10] Epoch 18: Loss(train): 0.058489 Loss(val): 0.058475
- [02:03:58] Epoch 20: Loss(train): 0.057222 Loss(val): 0.057490
- [02:05:39] Epoch 22: Loss(train): 0.056035 Loss(val): 0.056433
- [02:07:23] Epoch 24: Loss(train): 0.055428 Loss(val): 0.055924
- [02:09:03] Epoch 26: Loss(train): 0.054762 Loss(val): 0.055473
- [02:10:45] Epoch 28: Loss(train): 0.054114 Loss(val): 0.054938
- [02:12:36] Epoch 30: Loss(train): 0.053423 Loss(val): 0.054303
- [02:14:22] Epoch 32: Loss(train): 0.053115 Loss(val): 0.054204
- [02:16:12] Epoch 34: Loss(train): 0.052551 Loss(val): 0.053640
- [02:18:02] Epoch 36: Loss(train): 0.052369 Loss(val): 0.053541
- [02:19:47] Epoch 38: Loss(train): 0.052099 Loss(val): 0.053308
- [02:21:40] Epoch 40: Loss(train): 0.051823 Loss(val): 0.052996
- [02:21:56] FINAL(40) Loss(val): 0.052996 Accuarcy: 0.616395
- Search 24 of 500
- momentum0.99, features=[32, 64, 128], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
- [02:23:02] INIT Loss(val): 0.133748 Accuarcy: 0.106752
- [02:24:59] Epoch 2: Loss(train): 0.084285 Loss(val): 0.085462
- [02:26:52] Epoch 4: Loss(train): 0.073009 Loss(val): 0.074089
- [02:28:38] Epoch 6: Loss(train): 0.069297 Loss(val): 0.071221
- [02:30:26] Epoch 8: Loss(train): 0.066733 Loss(val): 0.068690
- [02:32:11] Epoch 10: Loss(train): 0.064559 Loss(val): 0.066219
- [02:33:54] Epoch 12: Loss(train): 0.064015 Loss(val): 0.064132
- [02:35:39] Epoch 14: Loss(train): 0.062375 Loss(val): 0.062579
- [02:37:22] Epoch 16: Loss(train): 0.060784 Loss(val): 0.061219
- [02:39:04] Epoch 18: Loss(train): 0.059065 Loss(val): 0.059696
- [02:40:53] Epoch 20: Loss(train): 0.057731 Loss(val): 0.058328
- [02:42:53] Epoch 22: Loss(train): 0.056679 Loss(val): 0.057394
- [02:45:15] Epoch 24: Loss(train): 0.056036 Loss(val): 0.056692
- [02:47:22] Epoch 26: Loss(train): 0.055356 Loss(val): 0.055885
- [02:49:12] Epoch 28: Loss(train): 0.054560 Loss(val): 0.055035
- [02:50:58] Epoch 30: Loss(train): 0.054176 Loss(val): 0.054564
- [02:52:50] Epoch 32: Loss(train): 0.053846 Loss(val): 0.054231
- [02:54:38] Epoch 34: Loss(train): 0.053485 Loss(val): 0.053779
- [02:56:28] Epoch 36: Loss(train): 0.052997 Loss(val): 0.053439
- [02:58:15] Epoch 38: Loss(train): 0.052470 Loss(val): 0.052942
- [03:00:02] Epoch 40: Loss(train): 0.052162 Loss(val): 0.052635
- [03:00:19] FINAL(40) Loss(val): 0.052635 Accuarcy: 0.628929
- Search 25 of 500
- momentum0.96, features=[64, 64, 64], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.03
- [03:01:32] INIT Loss(val): 0.139732 Accuarcy: 0.089677
- [03:03:33] Epoch 2: Loss(train): 0.082942 Loss(val): 0.083400
- [03:05:23] Epoch 4: Loss(train): 0.068298 Loss(val): 0.068648
- [03:07:10] Epoch 6: Loss(train): 0.065199 Loss(val): 0.066157
- [03:09:11] Epoch 8: Loss(train): 0.062757 Loss(val): 0.063605
- [03:11:01] Epoch 10: Loss(train): 0.060662 Loss(val): 0.061181
- [03:12:45] Epoch 12: Loss(train): 0.061178 Loss(val): 0.060557
- [03:14:29] Epoch 14: Loss(train): 0.060727 Loss(val): 0.060099
- [03:16:15] Epoch 16: Loss(train): 0.059698 Loss(val): 0.059351
- [03:18:07] Epoch 18: Loss(train): 0.059191 Loss(val): 0.058946
- [03:19:58] Epoch 20: Loss(train): 0.058253 Loss(val): 0.058241
- [03:21:48] Epoch 22: Loss(train): 0.057497 Loss(val): 0.057644
- [03:23:39] Epoch 24: Loss(train): 0.056404 Loss(val): 0.056670
- [03:25:28] Epoch 26: Loss(train): 0.055838 Loss(val): 0.056263
- [03:27:20] Epoch 28: Loss(train): 0.055152 Loss(val): 0.055671
- [03:29:10] Epoch 30: Loss(train): 0.054532 Loss(val): 0.055117
- [03:31:03] Epoch 32: Loss(train): 0.054211 Loss(val): 0.054901
- [03:32:55] Epoch 34: Loss(train): 0.053131 Loss(val): 0.053860
- [03:34:49] Epoch 36: Loss(train): 0.052709 Loss(val): 0.053471
- [03:36:40] Epoch 38: Loss(train): 0.052348 Loss(val): 0.053128
- [03:38:31] Epoch 40: Loss(train): 0.052056 Loss(val): 0.052836
- [03:38:48] FINAL(40) Loss(val): 0.052836 Accuarcy: 0.626956
- Search 26 of 500
- momentum0.98, features=[64, 64, 64], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.3
- [03:40:00] INIT Loss(val): 0.166028 Accuarcy: 0.109320
- [03:42:03] Epoch 2: Loss(train): 0.078286 Loss(val): 0.079137
- [03:43:50] Epoch 4: Loss(train): 0.069890 Loss(val): 0.070590
- [03:45:42] Epoch 6: Loss(train): 0.068108 Loss(val): 0.069192
- Early stopping with Loss(train) 0.069478 at epoch 6 (Accuracy: 0.431769)
- Search 27 of 500
- momentum0.99, features=[32, 64, 128], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
- [03:47:05] INIT Loss(val): 0.130044 Accuarcy: 0.093027
- [03:49:03] Epoch 2: Loss(train): 0.073057 Loss(val): 0.073623
- [03:50:54] Epoch 4: Loss(train): 0.068406 Loss(val): 0.069279
- [03:52:42] Epoch 6: Loss(train): 0.064816 Loss(val): 0.065600
- [03:54:34] Epoch 8: Loss(train): 0.062026 Loss(val): 0.062644
- [03:56:22] Epoch 10: Loss(train): 0.061487 Loss(val): 0.060742
- [03:58:22] Epoch 12: Loss(train): 0.060632 Loss(val): 0.059967
- [04:00:24] Epoch 14: Loss(train): 0.058923 Loss(val): 0.058691
- [04:02:21] Epoch 16: Loss(train): 0.057931 Loss(val): 0.057902
- [04:04:14] Epoch 18: Loss(train): 0.057200 Loss(val): 0.057431
- [04:06:08] Epoch 20: Loss(train): 0.055906 Loss(val): 0.056321
- [04:08:02] Epoch 22: Loss(train): 0.055524 Loss(val): 0.056040
- [04:09:56] Epoch 24: Loss(train): 0.054580 Loss(val): 0.055210
- [04:11:47] Epoch 26: Loss(train): 0.054290 Loss(val): 0.054957
- [04:13:45] Epoch 28: Loss(train): 0.053581 Loss(val): 0.054256
- [04:15:39] Epoch 30: Loss(train): 0.053228 Loss(val): 0.053937
- [04:17:38] Epoch 32: Loss(train): 0.052785 Loss(val): 0.053508
- Early stopping with Loss(train) 0.054120 at epoch 33 (Accuracy: 0.584745)
- Search 28 of 500
- momentum0.9, features=[96, 192, 192], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
- [04:19:49] INIT Loss(val): 0.136011 Accuarcy: 0.099609
- [04:21:53] Epoch 2: Loss(train): 0.077656 Loss(val): 0.077949
- [04:23:48] Epoch 4: Loss(train): 0.068895 Loss(val): 0.069556
- [04:25:40] Epoch 6: Loss(train): 0.066168 Loss(val): 0.067473
- [04:27:36] Epoch 8: Loss(train): 0.063354 Loss(val): 0.064709
- [04:29:29] Epoch 10: Loss(train): 0.061640 Loss(val): 0.062868
- [04:31:19] Epoch 12: Loss(train): 0.061320 Loss(val): 0.060932
- [04:33:10] Epoch 14: Loss(train): 0.059866 Loss(val): 0.059400
- [04:35:01] Epoch 16: Loss(train): 0.058214 Loss(val): 0.058128
- [04:36:51] Epoch 18: Loss(train): 0.057005 Loss(val): 0.057073
- [04:38:50] Epoch 20: Loss(train): 0.056297 Loss(val): 0.056596
- [04:40:46] Epoch 22: Loss(train): 0.055755 Loss(val): 0.056088
- [04:42:41] Epoch 24: Loss(train): 0.055030 Loss(val): 0.055492
- [04:44:38] Epoch 26: Loss(train): 0.054414 Loss(val): 0.054884
- [04:46:31] Epoch 28: Loss(train): 0.053946 Loss(val): 0.054396
- [04:48:26] Epoch 30: Loss(train): 0.053415 Loss(val): 0.053909
- [04:50:21] Epoch 32: Loss(train): 0.052741 Loss(val): 0.053254
- [04:52:18] Epoch 34: Loss(train): 0.052312 Loss(val): 0.052819
- [04:54:15] Epoch 36: Loss(train): 0.051820 Loss(val): 0.052377
- Early stopping with Loss(train) 0.053078 at epoch 37 (Accuracy: 0.614864)
- Search 29 of 500
- momentum0.98, features=[32, 32, 32], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.03
- [04:56:34] INIT Loss(val): 0.127762 Accuarcy: 0.093554
- [04:58:39] Epoch 2: Loss(train): 0.081097 Loss(val): 0.081242
- [05:00:37] Epoch 4: Loss(train): 0.070298 Loss(val): 0.070567
- [05:02:37] Epoch 6: Loss(train): 0.065919 Loss(val): 0.066522
- [05:04:42] Epoch 8: Loss(train): 0.063405 Loss(val): 0.064249
- [05:06:38] Epoch 10: Loss(train): 0.063253 Loss(val): 0.062682
- [05:08:34] Epoch 12: Loss(train): 0.061738 Loss(val): 0.061292
- [05:10:33] Epoch 14: Loss(train): 0.060479 Loss(val): 0.060325
- [05:12:27] Epoch 16: Loss(train): 0.059348 Loss(val): 0.059426
- [05:14:21] Epoch 18: Loss(train): 0.058353 Loss(val): 0.058594
- [05:16:16] Epoch 20: Loss(train): 0.057237 Loss(val): 0.057736
- [05:18:12] Epoch 22: Loss(train): 0.056678 Loss(val): 0.057289
- [05:20:15] Epoch 24: Loss(train): 0.055750 Loss(val): 0.056493
- [05:22:22] Epoch 26: Loss(train): 0.055023 Loss(val): 0.055779
- [05:24:29] Epoch 28: Loss(train): 0.054617 Loss(val): 0.055446
- [05:26:34] Epoch 30: Loss(train): 0.053968 Loss(val): 0.054875
- [05:28:41] Epoch 32: Loss(train): 0.053587 Loss(val): 0.054505
- [05:30:46] Epoch 34: Loss(train): 0.053049 Loss(val): 0.054103
- [05:32:47] Epoch 36: Loss(train): 0.052663 Loss(val): 0.053695
- [05:34:43] Epoch 38: Loss(train): 0.052114 Loss(val): 0.053180
- [05:37:04] Epoch 40: Loss(train): 0.051749 Loss(val): 0.052826
- [05:37:22] FINAL(40) Loss(val): 0.052826 Accuarcy: 0.624507
- Early stopping with Loss(train) 0.052970 at epoch 40 (Accuracy: 0.595935)
- Search 30 of 500
- momentum0.98, features=[96, 192, 192], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
- [05:39:00] INIT Loss(val): 0.127742 Accuarcy: 0.095663
- [05:41:51] Epoch 2: Loss(train): 0.081031 Loss(val): 0.081951
- [05:45:05] Epoch 4: Loss(train): 0.070746 Loss(val): 0.071572
- [05:48:05] Epoch 6: Loss(train): 0.067815 Loss(val): 0.069164
- [05:50:04] Epoch 8: Loss(train): 0.065377 Loss(val): 0.066656
- [05:52:08] Epoch 10: Loss(train): 0.063210 Loss(val): 0.064106
- [05:54:41] Epoch 12: Loss(train): 0.062753 Loss(val): 0.062455
- [05:56:39] Epoch 14: Loss(train): 0.061486 Loss(val): 0.061452
- [05:58:53] Epoch 16: Loss(train): 0.060042 Loss(val): 0.060332
- [06:00:49] Epoch 18: Loss(train): 0.059365 Loss(val): 0.059779
- [06:02:54] Epoch 20: Loss(train): 0.058556 Loss(val): 0.059076
- [06:04:54] Epoch 22: Loss(train): 0.057655 Loss(val): 0.058139
- [06:06:56] Epoch 24: Loss(train): 0.056971 Loss(val): 0.057441
- [06:08:55] Epoch 26: Loss(train): 0.055996 Loss(val): 0.056477
- [06:10:58] Epoch 28: Loss(train): 0.055765 Loss(val): 0.056300
- [06:14:14] Epoch 30: Loss(train): 0.054864 Loss(val): 0.055330
- [06:16:31] Epoch 32: Loss(train): 0.054358 Loss(val): 0.054817
- [06:19:21] Epoch 34: Loss(train): 0.053667 Loss(val): 0.054224
- [06:21:55] Epoch 36: Loss(train): 0.053111 Loss(val): 0.053710
- [06:24:00] Epoch 38: Loss(train): 0.052701 Loss(val): 0.053255
- [06:26:17] Epoch 40: Loss(train): 0.052049 Loss(val): 0.052678
- [06:26:41] FINAL(40) Loss(val): 0.052678 Accuarcy: 0.631378
- Search 31 of 500
- momentum0.9, features=[32, 64, 128], dropout_rate=0.8
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.03
- [06:28:02] INIT Loss(val): 0.133576 Accuarcy: 0.099745
- [06:30:17] Epoch 2: Loss(train): 0.080279 Loss(val): 0.080963
- [06:32:18] Epoch 4: Loss(train): 0.070567 Loss(val): 0.071757
- [06:34:19] Epoch 6: Loss(train): 0.066493 Loss(val): 0.067333
- [06:36:21] Epoch 8: Loss(train): 0.064128 Loss(val): 0.064883
- [06:38:18] Epoch 10: Loss(train): 0.062089 Loss(val): 0.062799
- [06:40:16] Epoch 12: Loss(train): 0.060965 Loss(val): 0.060560
- [06:42:14] Epoch 14: Loss(train): 0.060438 Loss(val): 0.059971
- [06:44:43] Epoch 16: Loss(train): 0.059131 Loss(val): 0.058957
- [06:48:03] Epoch 18: Loss(train): 0.057784 Loss(val): 0.057753
- [06:50:43] Epoch 20: Loss(train): 0.057066 Loss(val): 0.057209
- [06:53:15] Epoch 22: Loss(train): 0.055903 Loss(val): 0.056190
- [06:55:38] Epoch 24: Loss(train): 0.055119 Loss(val): 0.055490
- [06:57:56] Epoch 26: Loss(train): 0.054542 Loss(val): 0.054945
- [07:00:08] Epoch 28: Loss(train): 0.054099 Loss(val): 0.054588
- [07:02:13] Epoch 30: Loss(train): 0.053754 Loss(val): 0.054166
- [07:04:20] Epoch 32: Loss(train): 0.053401 Loss(val): 0.053892
- [07:06:25] Epoch 34: Loss(train): 0.053173 Loss(val): 0.053717
- [07:08:27] Epoch 36: Loss(train): 0.052537 Loss(val): 0.053207
- [07:10:29] Epoch 38: Loss(train): 0.052195 Loss(val): 0.052842
- [07:12:29] Epoch 40: Loss(train): 0.051708 Loss(val): 0.052489
- [07:12:47] FINAL(40) Loss(val): 0.052489 Accuarcy: 0.625255
- Search 32 of 500
- momentum0.99, features=[32, 32, 32], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
- [07:14:30] INIT Loss(val): 0.133619 Accuarcy: 0.084439
- [07:18:07] Epoch 2: Loss(train): 0.073850 Loss(val): 0.074187
- [07:20:36] Epoch 4: Loss(train): 0.067530 Loss(val): 0.068399
- [07:23:14] Epoch 6: Loss(train): 0.064794 Loss(val): 0.065898
- [07:25:46] Epoch 8: Loss(train): 0.062768 Loss(val): 0.063800
- [07:27:54] Epoch 10: Loss(train): 0.062472 Loss(val): 0.062035
- [07:30:10] Epoch 12: Loss(train): 0.060418 Loss(val): 0.060405
- [07:32:26] Epoch 14: Loss(train): 0.059070 Loss(val): 0.059311
- [07:34:35] Epoch 16: Loss(train): 0.057910 Loss(val): 0.058325
- [07:36:44] Epoch 18: Loss(train): 0.056905 Loss(val): 0.057580
- [07:38:54] Epoch 20: Loss(train): 0.056036 Loss(val): 0.056788
- [07:40:57] Epoch 22: Loss(train): 0.055506 Loss(val): 0.056173
- [07:43:06] Epoch 24: Loss(train): 0.054936 Loss(val): 0.055625
- [07:45:27] Epoch 26: Loss(train): 0.054225 Loss(val): 0.054838
- [07:48:13] Epoch 28: Loss(train): 0.053781 Loss(val): 0.054315
- [07:51:16] Epoch 30: Loss(train): 0.053474 Loss(val): 0.053908
- [07:54:02] Epoch 32: Loss(train): 0.052798 Loss(val): 0.053247
- [07:56:36] Epoch 34: Loss(train): 0.052396 Loss(val): 0.052880
- [07:59:01] Epoch 36: Loss(train): 0.052076 Loss(val): 0.052543
- [08:01:20] Epoch 38: Loss(train): 0.051783 Loss(val): 0.052259
- [08:03:37] Epoch 40: Loss(train): 0.051529 Loss(val): 0.052001
- [08:03:57] FINAL(40) Loss(val): 0.052001 Accuarcy: 0.645969
- Search 33 of 500
- momentum0.96, features=[32, 64, 128], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
- [08:05:24] INIT Loss(val): 0.178517 Accuarcy: 0.112415
- [08:07:42] Epoch 2: Loss(train): 0.073139 Loss(val): 0.073297
- [08:09:50] Epoch 4: Loss(train): 0.068176 Loss(val): 0.068788
- [08:11:55] Epoch 6: Loss(train): 0.065703 Loss(val): 0.066643
- [08:14:03] Epoch 8: Loss(train): 0.063960 Loss(val): 0.064976
- [08:16:06] Epoch 10: Loss(train): 0.062551 Loss(val): 0.063301
- [08:18:47] Epoch 12: Loss(train): 0.063731 Loss(val): 0.062842
- [08:21:02] Epoch 14: Loss(train): 0.061109 Loss(val): 0.060589
- [08:23:14] Epoch 16: Loss(train): 0.059993 Loss(val): 0.059475
- [08:25:26] Epoch 18: Loss(train): 0.058808 Loss(val): 0.058376
- [08:27:50] Epoch 20: Loss(train): 0.057739 Loss(val): 0.057466
- [08:29:59] Epoch 22: Loss(train): 0.057158 Loss(val): 0.056976
- [08:32:06] Epoch 24: Loss(train): 0.056492 Loss(val): 0.056414
- [08:34:28] Epoch 26: Loss(train): 0.055811 Loss(val): 0.055825
- [08:36:36] Epoch 28: Loss(train): 0.055204 Loss(val): 0.055333
- [08:38:46] Epoch 30: Loss(train): 0.054898 Loss(val): 0.055027
- [08:41:09] Epoch 32: Loss(train): 0.053986 Loss(val): 0.054217
- [08:43:25] Epoch 34: Loss(train): 0.053655 Loss(val): 0.053866
- [08:45:34] Epoch 36: Loss(train): 0.052755 Loss(val): 0.053041
- [08:47:51] Epoch 38: Loss(train): 0.052027 Loss(val): 0.052424
- [08:50:00] Epoch 40: Loss(train): 0.051380 Loss(val): 0.051832
- [08:50:21] FINAL(40) Loss(val): 0.051832 Accuarcy: 0.644133
- Search 34 of 500
- momentum0.9, features=[96, 192, 192], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
- [08:51:40] INIT Loss(val): 0.144004 Accuarcy: 0.099796
- [08:53:56] Epoch 2: Loss(train): 0.076873 Loss(val): 0.077967
- [08:56:01] Epoch 4: Loss(train): 0.069047 Loss(val): 0.070184
- [08:58:14] Epoch 6: Loss(train): 0.066172 Loss(val): 0.067933
- [09:00:35] Epoch 8: Loss(train): 0.063611 Loss(val): 0.064377
- [09:02:47] Epoch 10: Loss(train): 0.063118 Loss(val): 0.062959
- [09:05:01] Epoch 12: Loss(train): 0.060982 Loss(val): 0.061159
- [09:07:14] Epoch 14: Loss(train): 0.059704 Loss(val): 0.060033
- [09:09:23] Epoch 16: Loss(train): 0.058530 Loss(val): 0.059018
- [09:11:38] Epoch 18: Loss(train): 0.057384 Loss(val): 0.057913
- [09:14:04] Epoch 20: Loss(train): 0.056447 Loss(val): 0.057108
- [09:16:16] Epoch 22: Loss(train): 0.055736 Loss(val): 0.056406
- [09:18:40] Epoch 24: Loss(train): 0.055298 Loss(val): 0.056005
- [09:21:01] Epoch 26: Loss(train): 0.054855 Loss(val): 0.055544
- [09:23:14] Epoch 28: Loss(train): 0.054428 Loss(val): 0.055165
- [09:25:34] Epoch 30: Loss(train): 0.053971 Loss(val): 0.054723
- Early stopping with Loss(train) 0.055224 at epoch 31 (Accuracy: 0.570884)
- Search 35 of 500
- momentum0.98, features=[32, 64, 128], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.01
- [09:28:11] INIT Loss(val): 0.131561 Accuarcy: 0.088435
- [09:30:33] Epoch 2: Loss(train): 0.078600 Loss(val): 0.079560
- [09:32:44] Epoch 4: Loss(train): 0.069469 Loss(val): 0.070441
- [09:34:53] Epoch 6: Loss(train): 0.066407 Loss(val): 0.067910
- [09:37:13] Epoch 8: Loss(train): 0.063834 Loss(val): 0.065309
- [09:39:54] Epoch 10: Loss(train): 0.063342 Loss(val): 0.063286
- [09:42:15] Epoch 12: Loss(train): 0.061538 Loss(val): 0.061831
- [09:44:29] Epoch 14: Loss(train): 0.060098 Loss(val): 0.060590
- [09:46:46] Epoch 16: Loss(train): 0.058880 Loss(val): 0.059626
- [09:48:56] Epoch 18: Loss(train): 0.058013 Loss(val): 0.058851
- [09:51:21] Epoch 20: Loss(train): 0.057582 Loss(val): 0.058371
- Early stopping with Loss(train) 0.059074 at epoch 20 (Accuracy: 0.533912)
- Search 36 of 500
- momentum0.98, features=[32, 64, 128], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
- [09:53:01] INIT Loss(val): 0.128501 Accuarcy: 0.093844
- [09:55:31] Epoch 2: Loss(train): 0.078614 Loss(val): 0.078914
- [09:57:57] Epoch 4: Loss(train): 0.069358 Loss(val): 0.069975
- [10:00:16] Epoch 6: Loss(train): 0.065321 Loss(val): 0.066424
- [10:02:44] Epoch 8: Loss(train): 0.063663 Loss(val): 0.065086
- [10:05:02] Epoch 10: Loss(train): 0.061664 Loss(val): 0.062794
- [10:07:20] Epoch 12: Loss(train): 0.060420 Loss(val): 0.059941
- [10:09:34] Epoch 14: Loss(train): 0.059115 Loss(val): 0.058971
- [10:11:45] Epoch 16: Loss(train): 0.058384 Loss(val): 0.058312
- [10:13:59] Epoch 18: Loss(train): 0.057044 Loss(val): 0.057162
- [10:16:13] Epoch 20: Loss(train): 0.056068 Loss(val): 0.056346
- [10:18:34] Epoch 22: Loss(train): 0.055208 Loss(val): 0.055646
- [10:20:58] Epoch 24: Loss(train): 0.054296 Loss(val): 0.054775
- [10:23:15] Epoch 26: Loss(train): 0.053540 Loss(val): 0.054122
- [10:25:39] Epoch 28: Loss(train): 0.052913 Loss(val): 0.053533
- [10:27:58] Epoch 30: Loss(train): 0.052410 Loss(val): 0.052975
- [10:30:17] Epoch 32: Loss(train): 0.051984 Loss(val): 0.052642
- [10:32:35] Epoch 34: Loss(train): 0.051636 Loss(val): 0.052200
- [10:35:02] Epoch 36: Loss(train): 0.051358 Loss(val): 0.051943
- [10:37:34] Epoch 38: Loss(train): 0.051226 Loss(val): 0.051788
- [10:40:00] Epoch 40: Loss(train): 0.050862 Loss(val): 0.051429
- [10:40:21] FINAL(40) Loss(val): 0.051429 Accuarcy: 0.651922
- Search 37 of 500
- momentum0.94, features=[64, 64, 64], dropout_rate=0.8
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
- [10:41:50] INIT Loss(val): 0.135753 Accuarcy: 0.104099
- [10:44:26] Epoch 2: Loss(train): 0.079794 Loss(val): 0.080364
- [10:46:44] Epoch 4: Loss(train): 0.069623 Loss(val): 0.070324
- [10:49:04] Epoch 6: Loss(train): 0.064974 Loss(val): 0.065927
- [10:51:28] Epoch 8: Loss(train): 0.062599 Loss(val): 0.063265
- [10:53:40] Epoch 10: Loss(train): 0.062145 Loss(val): 0.061630
- [10:55:54] Epoch 12: Loss(train): 0.061773 Loss(val): 0.061062
- [10:58:12] Epoch 14: Loss(train): 0.060630 Loss(val): 0.060278
- [11:00:38] Epoch 16: Loss(train): 0.059063 Loss(val): 0.059083
- [11:03:04] Epoch 18: Loss(train): 0.057864 Loss(val): 0.058049
- [11:05:33] Epoch 20: Loss(train): 0.056927 Loss(val): 0.057260
- [11:08:05] Epoch 22: Loss(train): 0.055935 Loss(val): 0.056480
- [11:10:24] Epoch 24: Loss(train): 0.054968 Loss(val): 0.055692
- [11:12:51] Epoch 26: Loss(train): 0.054661 Loss(val): 0.055324
- [11:15:24] Epoch 28: Loss(train): 0.054079 Loss(val): 0.054774
- [11:17:53] Epoch 30: Loss(train): 0.053640 Loss(val): 0.054396
- [11:20:23] Epoch 32: Loss(train): 0.053329 Loss(val): 0.054070
- [11:22:48] Epoch 34: Loss(train): 0.052933 Loss(val): 0.053679
- [11:25:08] Epoch 36: Loss(train): 0.052513 Loss(val): 0.053309
- [11:27:32] Epoch 38: Loss(train): 0.052231 Loss(val): 0.053066
- [11:29:55] Epoch 40: Loss(train): 0.051719 Loss(val): 0.052561
- [11:30:19] FINAL(40) Loss(val): 0.052561 Accuarcy: 0.624575
- Search 38 of 500
- momentum0.96, features=[64, 64, 64], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
- [11:31:48] INIT Loss(val): 0.147992 Accuarcy: 0.094031
- [11:34:20] Epoch 2: Loss(train): 0.081095 Loss(val): 0.081899
- [11:36:38] Epoch 4: Loss(train): 0.071199 Loss(val): 0.072058
- [11:39:04] Epoch 6: Loss(train): 0.066202 Loss(val): 0.067400
- [11:41:36] Epoch 8: Loss(train): 0.063791 Loss(val): 0.065201
- [11:44:05] Epoch 10: Loss(train): 0.061899 Loss(val): 0.062050
- [11:46:25] Epoch 12: Loss(train): 0.061027 Loss(val): 0.060768
- [11:48:46] Epoch 14: Loss(train): 0.059124 Loss(val): 0.059066
- [11:51:10] Epoch 16: Loss(train): 0.057615 Loss(val): 0.057749
- [11:53:41] Epoch 18: Loss(train): 0.056756 Loss(val): 0.056945
- [11:56:19] Epoch 20: Loss(train): 0.056063 Loss(val): 0.056301
- [11:58:45] Epoch 22: Loss(train): 0.055472 Loss(val): 0.055713
- [12:01:20] Epoch 24: Loss(train): 0.054792 Loss(val): 0.055112
|