log_20_09_2019.log 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039
  1. --------[20_09_2019 13:25:28]--------
  2. Random Grid Search
  3. Search 1 of 500
  4. momentum0.96, features=[96, 192, 192], dropout_rate=0.6
  5. kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.03
  6. [13:26:39] INIT Loss(val): 0.141007 Accuarcy: 0.117381
  7. [13:29:14] Epoch 2: Loss(train): 0.088968 Loss(val): 0.087040
  8. [13:30:22] Epoch 4: Loss(train): 0.078608 Loss(val): 0.076951
  9. [13:31:29] Epoch 6: Loss(train): 0.076482 Loss(val): 0.074798
  10. [13:32:37] Epoch 8: Loss(train): 0.074540 Loss(val): 0.072936
  11. [13:33:44] Epoch 10: Loss(train): 0.073011 Loss(val): 0.071681
  12. [13:34:52] Epoch 12: Loss(train): 0.071422 Loss(val): 0.070381
  13. [13:36:01] Epoch 14: Loss(train): 0.070299 Loss(val): 0.069362
  14. [13:37:10] Epoch 16: Loss(train): 0.069983 Loss(val): 0.069102
  15. [13:38:18] Epoch 18: Loss(train): 0.069733 Loss(val): 0.068830
  16. [13:39:27] Epoch 20: Loss(train): 0.068419 Loss(val): 0.067956
  17. [13:40:35] Epoch 22: Loss(train): 0.068390 Loss(val): 0.067870
  18. [13:41:44] Epoch 24: Loss(train): 0.068358 Loss(val): 0.067915
  19. [13:42:53] Epoch 26: Loss(train): 0.068200 Loss(val): 0.067803
  20. [13:44:01] Epoch 28: Loss(train): 0.067958 Loss(val): 0.067655
  21. [13:45:10] Epoch 30: Loss(train): 0.067752 Loss(val): 0.067437
  22. [13:46:18] Epoch 32: Loss(train): 0.067372 Loss(val): 0.067225
  23. [13:47:28] Epoch 34: Loss(train): 0.067107 Loss(val): 0.067024
  24. [13:48:38] Epoch 36: Loss(train): 0.066756 Loss(val): 0.066762
  25. [13:49:50] Epoch 38: Loss(train): 0.066352 Loss(val): 0.066501
  26. [13:50:59] Epoch 40: Loss(train): 0.066226 Loss(val): 0.066400
  27. [13:51:06] FINAL(40) Loss(val): 0.066400 Accuarcy: 0.621310
  28. Search 2 of 500
  29. momentum0.99, features=[32, 32, 32], dropout_rate=0.4
  30. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
  31. [13:51:25] INIT Loss(val): 0.116734 Accuarcy: 0.086190
  32. [13:52:24] Epoch 2: Loss(train): 0.111209 Loss(val): 0.112811
  33. [13:52:52] Epoch 4: Loss(train): 0.070398 Loss(val): 0.072423
  34. [13:53:22] Epoch 6: Loss(train): 0.068424 Loss(val): 0.070707
  35. [13:53:52] Epoch 8: Loss(train): 0.067158 Loss(val): 0.069694
  36. [13:54:21] Epoch 10: Loss(train): 0.066686 Loss(val): 0.069351
  37. [13:54:50] Epoch 12: Loss(train): 0.066295 Loss(val): 0.069087
  38. [13:55:20] Epoch 14: Loss(train): 0.066166 Loss(val): 0.069011
  39. [13:55:49] Epoch 16: Loss(train): 0.066101 Loss(val): 0.068977
  40. [13:56:18] Epoch 18: Loss(train): 0.066013 Loss(val): 0.068943
  41. [13:56:46] Epoch 20: Loss(train): 0.065961 Loss(val): 0.068933
  42. [13:57:14] Epoch 22: Loss(train): 0.065942 Loss(val): 0.068932
  43. Early stopping with Loss(train) 0.065942 at epoch 22 (Accuracy: 0.091786)
  44. Search 3 of 500
  45. momentum0.98, features=[32, 64, 128], dropout_rate=0.3
  46. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.3
  47. [13:57:28] INIT Loss(val): 0.158934 Accuarcy: 0.094031
  48. [13:59:04] Epoch 2: Loss(train): 0.079493 Loss(val): 0.079803
  49. [14:00:10] Epoch 4: Loss(train): 0.071139 Loss(val): 0.070190
  50. [14:01:15] Epoch 6: Loss(train): 0.057562 Loss(val): 0.059708
  51. [14:02:20] Epoch 8: Loss(train): 0.042016 Loss(val): 0.042341
  52. [14:03:25] Epoch 10: Loss(train): 0.035010 Loss(val): 0.034012
  53. [14:04:32] Epoch 12: Loss(train): 0.031262 Loss(val): 0.030622
  54. [14:05:40] Epoch 14: Loss(train): 0.031100 Loss(val): 0.031548
  55. [14:06:43] Epoch 16: Loss(train): 0.027940 Loss(val): 0.026886
  56. [14:07:49] Epoch 18: Loss(train): 0.026650 Loss(val): 0.026341
  57. [14:08:55] Epoch 20: Loss(train): 0.025911 Loss(val): 0.024959
  58. [14:09:59] Epoch 22: Loss(train): 0.023871 Loss(val): 0.022819
  59. [14:11:04] Epoch 24: Loss(train): 0.022636 Loss(val): 0.021778
  60. [14:12:08] Epoch 26: Loss(train): 0.020553 Loss(val): 0.020178
  61. [14:13:13] Epoch 28: Loss(train): 0.020170 Loss(val): 0.019662
  62. [14:14:21] Epoch 30: Loss(train): 0.020618 Loss(val): 0.019873
  63. [14:15:29] Epoch 32: Loss(train): 0.021250 Loss(val): 0.020526
  64. [14:16:36] Epoch 34: Loss(train): 0.020209 Loss(val): 0.019461
  65. [14:17:50] Epoch 36: Loss(train): 0.019272 Loss(val): 0.018871
  66. [14:19:04] Epoch 38: Loss(train): 0.019579 Loss(val): 0.019146
  67. [14:20:18] Epoch 40: Loss(train): 0.020248 Loss(val): 0.019587
  68. [14:20:28] FINAL(40) Loss(val): 0.019587 Accuarcy: 0.607517
  69. Search 4 of 500
  70. momentum0.98, features=[32, 32, 32], dropout_rate=0.3
  71. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
  72. [14:20:51] INIT Loss(val): 0.128640 Accuarcy: 0.094643
  73. [14:21:39] Epoch 2: Loss(train): 0.056761 Loss(val): 0.056647
  74. [14:22:08] Epoch 4: Loss(train): 0.050836 Loss(val): 0.050852
  75. [14:22:37] Epoch 6: Loss(train): 0.048547 Loss(val): 0.048590
  76. [14:23:06] Epoch 8: Loss(train): 0.047363 Loss(val): 0.047409
  77. [14:23:35] Epoch 10: Loss(train): 0.046506 Loss(val): 0.046528
  78. [14:24:05] Epoch 12: Loss(train): 0.046048 Loss(val): 0.046113
  79. [14:24:34] Epoch 14: Loss(train): 0.045531 Loss(val): 0.045707
  80. [14:25:05] Epoch 16: Loss(train): 0.045208 Loss(val): 0.045390
  81. [14:25:35] Epoch 18: Loss(train): 0.044927 Loss(val): 0.045131
  82. [14:26:06] Epoch 20: Loss(train): 0.044599 Loss(val): 0.044836
  83. [14:26:36] Epoch 22: Loss(train): 0.044361 Loss(val): 0.044653
  84. [14:27:05] Epoch 24: Loss(train): 0.044173 Loss(val): 0.044473
  85. [14:27:36] Epoch 26: Loss(train): 0.043907 Loss(val): 0.044196
  86. [14:28:06] Epoch 28: Loss(train): 0.043688 Loss(val): 0.044030
  87. [14:28:36] Epoch 30: Loss(train): 0.043458 Loss(val): 0.043854
  88. [14:29:07] Epoch 32: Loss(train): 0.043282 Loss(val): 0.043654
  89. [14:29:37] Epoch 34: Loss(train): 0.043138 Loss(val): 0.043506
  90. [14:30:07] Epoch 36: Loss(train): 0.042960 Loss(val): 0.043359
  91. [14:30:38] Epoch 38: Loss(train): 0.042856 Loss(val): 0.043255
  92. Early stopping with Loss(train) 0.044059 at epoch 38 (Accuracy: 0.575901)
  93. Search 5 of 500
  94. momentum0.94, features=[64, 64, 64], dropout_rate=0.1
  95. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
  96. [14:30:53] INIT Loss(val): 0.119816 Accuarcy: 0.091463
  97. [14:34:37] Epoch 2: Loss(train): 0.068172 Loss(val): 0.066521
  98. [14:38:47] Epoch 4: Loss(train): 0.061371 Loss(val): 0.060421
  99. [14:44:35] Epoch 6: Loss(train): 0.058998 Loss(val): 0.058359
  100. [14:50:21] Epoch 8: Loss(train): 0.057713 Loss(val): 0.057312
  101. [14:54:55] Epoch 10: Loss(train): 0.056964 Loss(val): 0.056694
  102. [14:59:13] Epoch 12: Loss(train): 0.056202 Loss(val): 0.056133
  103. [15:03:30] Epoch 14: Loss(train): 0.055774 Loss(val): 0.055825
  104. [15:07:46] Epoch 16: Loss(train): 0.055417 Loss(val): 0.055541
  105. [15:09:41] Epoch 18: Loss(train): 0.055157 Loss(val): 0.055343
  106. [15:11:36] Epoch 20: Loss(train): 0.054948 Loss(val): 0.055184
  107. [15:14:40] Epoch 22: Loss(train): 0.054736 Loss(val): 0.055040
  108. [15:17:10] Epoch 24: Loss(train): 0.054518 Loss(val): 0.054851
  109. [15:19:29] Epoch 26: Loss(train): 0.054388 Loss(val): 0.054757
  110. [15:21:38] Epoch 28: Loss(train): 0.054141 Loss(val): 0.054547
  111. [15:23:56] Epoch 30: Loss(train): 0.054011 Loss(val): 0.054442
  112. [15:25:57] Epoch 32: Loss(train): 0.053802 Loss(val): 0.054259
  113. [15:27:59] Epoch 34: Loss(train): 0.053625 Loss(val): 0.054112
  114. [15:30:03] Epoch 36: Loss(train): 0.053405 Loss(val): 0.053942
  115. [15:32:05] Epoch 38: Loss(train): 0.053237 Loss(val): 0.053814
  116. Early stopping with Loss(train) 0.054171 at epoch 38 (Accuracy: 0.534439)
  117. Search 6 of 500
  118. momentum0.94, features=[96, 192, 192], dropout_rate=0.3
  119. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.1
  120. [15:32:54] INIT Loss(val): 0.138280 Accuarcy: 0.103418
  121. [15:34:06] Epoch 2: Loss(train): 0.083781 Loss(val): 0.084471
  122. [15:35:16] Epoch 4: Loss(train): 0.076121 Loss(val): 0.077370
  123. [15:36:23] Epoch 6: Loss(train): 0.074109 Loss(val): 0.073338
  124. [15:37:30] Epoch 8: Loss(train): 0.070528 Loss(val): 0.070370
  125. [15:38:36] Epoch 10: Loss(train): 0.067579 Loss(val): 0.067635
  126. [15:39:43] Epoch 12: Loss(train): 0.065495 Loss(val): 0.065627
  127. [15:40:51] Epoch 14: Loss(train): 0.064575 Loss(val): 0.064573
  128. [15:42:01] Epoch 16: Loss(train): 0.062974 Loss(val): 0.063009
  129. [15:43:23] Epoch 18: Loss(train): 0.061456 Loss(val): 0.061671
  130. [15:44:49] Epoch 20: Loss(train): 0.060464 Loss(val): 0.060732
  131. [15:46:07] Epoch 22: Loss(train): 0.059721 Loss(val): 0.060011
  132. [15:47:29] Epoch 24: Loss(train): 0.058930 Loss(val): 0.059211
  133. [15:48:42] Epoch 26: Loss(train): 0.058132 Loss(val): 0.058528
  134. [15:50:06] Epoch 28: Loss(train): 0.057695 Loss(val): 0.058175
  135. [15:51:18] Epoch 30: Loss(train): 0.056704 Loss(val): 0.057436
  136. [15:52:28] Epoch 32: Loss(train): 0.056475 Loss(val): 0.057144
  137. [15:53:48] Epoch 34: Loss(train): 0.055826 Loss(val): 0.056582
  138. Early stopping with Loss(train) 0.056777 at epoch 35 (Accuracy: 0.632602)
  139. Search 7 of 500
  140. momentum0.9, features=[32, 64, 128], dropout_rate=0.4
  141. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
  142. [15:54:46] INIT Loss(val): 0.146946 Accuarcy: 0.092534
  143. [15:59:34] Epoch 2: Loss(train): 0.080755 Loss(val): 0.080996
  144. [16:04:53] Epoch 4: Loss(train): 0.072572 Loss(val): 0.072945
  145. [16:10:04] Epoch 6: Loss(train): 0.069757 Loss(val): 0.070359
  146. [16:16:05] Epoch 8: Loss(train): 0.068311 Loss(val): 0.069053
  147. [16:18:27] Epoch 10: Loss(train): 0.067540 Loss(val): 0.068310
  148. [16:20:27] Epoch 12: Loss(train): 0.066874 Loss(val): 0.067751
  149. [16:21:51] Epoch 14: Loss(train): 0.066258 Loss(val): 0.067226
  150. [16:23:24] Epoch 16: Loss(train): 0.065859 Loss(val): 0.066875
  151. [16:24:42] Epoch 18: Loss(train): 0.065511 Loss(val): 0.066519
  152. [16:26:03] Epoch 20: Loss(train): 0.065213 Loss(val): 0.066262
  153. [16:27:34] Epoch 22: Loss(train): 0.064957 Loss(val): 0.066055
  154. [16:28:56] Epoch 24: Loss(train): 0.064687 Loss(val): 0.065852
  155. [16:30:15] Epoch 26: Loss(train): 0.064495 Loss(val): 0.065710
  156. [16:31:42] Epoch 28: Loss(train): 0.064351 Loss(val): 0.065567
  157. [16:33:03] Epoch 30: Loss(train): 0.064181 Loss(val): 0.065445
  158. Early stopping with Loss(train) 0.067298 at epoch 31 (Accuracy: 0.446395)
  159. Search 8 of 500
  160. momentum0.96, features=[32, 32, 32], dropout_rate=0.6
  161. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
  162. [16:34:07] INIT Loss(val): 0.114290 Accuarcy: 0.088316
  163. [16:34:46] Epoch 2: Loss(train): 0.064952 Loss(val): 0.064766
  164. [16:35:23] Epoch 4: Loss(train): 0.055647 Loss(val): 0.055572
  165. [16:36:02] Epoch 6: Loss(train): 0.052844 Loss(val): 0.052606
  166. [16:36:38] Epoch 8: Loss(train): 0.050985 Loss(val): 0.050845
  167. [16:37:12] Epoch 10: Loss(train): 0.049845 Loss(val): 0.049633
  168. [16:37:47] Epoch 12: Loss(train): 0.049152 Loss(val): 0.048910
  169. [16:38:22] Epoch 14: Loss(train): 0.048669 Loss(val): 0.048351
  170. [16:38:57] Epoch 16: Loss(train): 0.048184 Loss(val): 0.047886
  171. [16:39:31] Epoch 18: Loss(train): 0.047724 Loss(val): 0.047523
  172. [16:40:06] Epoch 20: Loss(train): 0.047366 Loss(val): 0.047177
  173. [16:40:42] Epoch 22: Loss(train): 0.047168 Loss(val): 0.046973
  174. [16:41:17] Epoch 24: Loss(train): 0.046858 Loss(val): 0.046676
  175. [16:41:52] Epoch 26: Loss(train): 0.046654 Loss(val): 0.046519
  176. [16:42:27] Epoch 28: Loss(train): 0.046444 Loss(val): 0.046329
  177. [16:43:03] Epoch 30: Loss(train): 0.046292 Loss(val): 0.046197
  178. [16:43:39] Epoch 32: Loss(train): 0.046148 Loss(val): 0.046083
  179. [16:44:14] Epoch 34: Loss(train): 0.045966 Loss(val): 0.045960
  180. [16:44:50] Epoch 36: Loss(train): 0.045872 Loss(val): 0.045834
  181. [16:45:40] Epoch 38: Loss(train): 0.045775 Loss(val): 0.045743
  182. Early stopping with Loss(train) 0.048965 at epoch 38 (Accuracy: 0.502738)
  183. Search 9 of 500
  184. momentum0.9, features=[32, 64, 128], dropout_rate=0.6
  185. kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.3
  186. [16:46:09] INIT Loss(val): 0.128704 Accuarcy: 0.095255
  187. [16:47:37] Epoch 2: Loss(train): 0.068261 Loss(val): 0.066425
  188. [16:48:59] Epoch 4: Loss(train): 0.059768 Loss(val): 0.058380
  189. [16:49:56] Epoch 6: Loss(train): 0.056013 Loss(val): 0.054921
  190. [16:50:56] Epoch 8: Loss(train): 0.052184 Loss(val): 0.051936
  191. [16:52:12] Epoch 10: Loss(train): 0.050930 Loss(val): 0.050823
  192. [16:53:14] Epoch 12: Loss(train): 0.050832 Loss(val): 0.051081
  193. [16:54:05] Epoch 14: Loss(train): 0.047966 Loss(val): 0.048353
  194. [16:54:58] Epoch 16: Loss(train): 0.046510 Loss(val): 0.046471
  195. [16:55:53] Epoch 18: Loss(train): 0.045391 Loss(val): 0.045162
  196. Early stopping with Loss(train) 0.047088 at epoch 19 (Accuracy: 0.514779)
  197. Search 10 of 500
  198. momentum0.99, features=[32, 32, 32], dropout_rate=0.6
  199. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
  200. [16:56:41] INIT Loss(val): 0.155156 Accuarcy: 0.107092
  201. [16:57:23] Epoch 2: Loss(train): 0.082692 Loss(val): 0.082872
  202. [16:58:03] Epoch 4: Loss(train): 0.070038 Loss(val): 0.068951
  203. [16:58:43] Epoch 6: Loss(train): 0.052024 Loss(val): 0.051050
  204. [16:59:23] Epoch 8: Loss(train): 0.042558 Loss(val): 0.042033
  205. [17:00:01] Epoch 10: Loss(train): 0.033804 Loss(val): 0.032005
  206. [17:00:41] Epoch 12: Loss(train): 0.028679 Loss(val): 0.028131
  207. [17:01:25] Epoch 14: Loss(train): 0.026270 Loss(val): 0.025863
  208. [17:02:07] Epoch 16: Loss(train): 0.025516 Loss(val): 0.024859
  209. [17:02:46] Epoch 18: Loss(train): 0.024369 Loss(val): 0.024071
  210. [17:03:26] Epoch 20: Loss(train): 0.022684 Loss(val): 0.022117
  211. [17:04:06] Epoch 22: Loss(train): 0.022049 Loss(val): 0.020969
  212. [17:04:45] Epoch 24: Loss(train): 0.021334 Loss(val): 0.020421
  213. [17:05:26] Epoch 26: Loss(train): 0.021068 Loss(val): 0.020358
  214. [17:06:06] Epoch 28: Loss(train): 0.021064 Loss(val): 0.020323
  215. [17:06:45] Epoch 30: Loss(train): 0.021924 Loss(val): 0.020800
  216. [17:07:25] Epoch 32: Loss(train): 0.022128 Loss(val): 0.021133
  217. [17:08:05] Epoch 34: Loss(train): 0.021443 Loss(val): 0.020385
  218. [17:08:44] Epoch 36: Loss(train): 0.023132 Loss(val): 0.021738
  219. [17:09:23] Epoch 38: Loss(train): 0.024656 Loss(val): 0.023247
  220. [17:10:02] Epoch 40: Loss(train): 0.022748 Loss(val): 0.021955
  221. [17:10:07] FINAL(40) Loss(val): 0.021955 Accuarcy: 0.579932
  222. Search 11 of 500
  223. momentum0.99, features=[32, 64, 128], dropout_rate=0.3
  224. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
  225. [17:10:22] INIT Loss(val): 0.131512 Accuarcy: 0.094524
  226. [17:11:17] Epoch 2: Loss(train): 0.067090 Loss(val): 0.065792
  227. [17:12:12] Epoch 4: Loss(train): 0.061073 Loss(val): 0.059899
  228. [17:13:05] Epoch 6: Loss(train): 0.059854 Loss(val): 0.059079
  229. [17:14:02] Epoch 8: Loss(train): 0.059035 Loss(val): 0.058605
  230. [17:14:57] Epoch 10: Loss(train): 0.058039 Loss(val): 0.057734
  231. [17:15:54] Epoch 12: Loss(train): 0.056114 Loss(val): 0.055818
  232. [17:17:03] Epoch 14: Loss(train): 0.055465 Loss(val): 0.055276
  233. [17:18:32] Epoch 16: Loss(train): 0.055368 Loss(val): 0.055433
  234. [17:19:59] Epoch 18: Loss(train): 0.055454 Loss(val): 0.055520
  235. [17:21:32] Epoch 20: Loss(train): 0.055490 Loss(val): 0.055287
  236. [17:22:53] Epoch 22: Loss(train): 0.054614 Loss(val): 0.054396
  237. [17:23:49] Epoch 24: Loss(train): 0.053453 Loss(val): 0.053415
  238. [17:25:15] Epoch 26: Loss(train): 0.053183 Loss(val): 0.053106
  239. [17:26:20] Epoch 28: Loss(train): 0.053469 Loss(val): 0.053248
  240. [17:27:23] Epoch 30: Loss(train): 0.054454 Loss(val): 0.053836
  241. [17:28:23] Epoch 32: Loss(train): 0.054597 Loss(val): 0.053841
  242. [17:29:24] Epoch 34: Loss(train): 0.053575 Loss(val): 0.053139
  243. [17:30:23] Epoch 36: Loss(train): 0.052531 Loss(val): 0.052516
  244. [17:31:27] Epoch 38: Loss(train): 0.052137 Loss(val): 0.052324
  245. [17:32:28] Epoch 40: Loss(train): 0.051984 Loss(val): 0.052194
  246. [17:32:35] FINAL(40) Loss(val): 0.052194 Accuarcy: 0.657959
  247. Search 12 of 500
  248. momentum0.98, features=[64, 64, 64], dropout_rate=0.1
  249. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
  250. [17:32:56] INIT Loss(val): 0.152510 Accuarcy: 0.094932
  251. [17:34:22] Epoch 2: Loss(train): 0.076679 Loss(val): 0.078237
  252. [17:35:44] Epoch 4: Loss(train): 0.059022 Loss(val): 0.060126
  253. [17:40:56] Epoch 6: Loss(train): 0.050557 Loss(val): 0.051844
  254. [17:49:29] Epoch 8: Loss(train): 0.045205 Loss(val): 0.045557
  255. [18:00:08] Epoch 10: Loss(train): 0.040994 Loss(val): 0.041337
  256. [18:08:11] Epoch 12: Loss(train): 0.038653 Loss(val): 0.038964
  257. [18:15:40] Epoch 14: Loss(train): 0.036438 Loss(val): 0.036957
  258. [18:25:46] Epoch 16: Loss(train): 0.035700 Loss(val): 0.035639
  259. [18:35:47] Epoch 18: Loss(train): 0.034637 Loss(val): 0.034805
  260. [18:43:48] Epoch 20: Loss(train): 0.031340 Loss(val): 0.031079
  261. [18:51:14] Epoch 22: Loss(train): 0.029792 Loss(val): 0.029546
  262. [19:02:50] Epoch 24: Loss(train): 0.028174 Loss(val): 0.027946
  263. [19:11:45] Epoch 26: Loss(train): 0.027586 Loss(val): 0.027259
  264. [19:19:33] Epoch 28: Loss(train): 0.027456 Loss(val): 0.027579
  265. [19:28:45] Epoch 30: Loss(train): 0.027956 Loss(val): 0.027891
  266. [19:40:09] Epoch 32: Loss(train): 0.028770 Loss(val): 0.028286
  267. Early stopping with Loss(train) 0.028975 at epoch 33 (Accuracy: 0.584439)
  268. Search 13 of 500
  269. momentum0.99, features=[64, 64, 64], dropout_rate=0.1
  270. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
  271. [19:46:57] INIT Loss(val): 0.145452 Accuarcy: 0.113588
  272. [19:50:44] Epoch 2: Loss(train): 0.089347 Loss(val): 0.088077
  273. [19:54:42] Epoch 4: Loss(train): 0.063581 Loss(val): 0.064125
  274. [19:59:21] Epoch 6: Loss(train): 0.061616 Loss(val): 0.062470
  275. [20:06:13] Epoch 8: Loss(train): 0.061005 Loss(val): 0.061986
  276. [20:11:36] Epoch 10: Loss(train): 0.060453 Loss(val): 0.061392
  277. [20:16:11] Epoch 12: Loss(train): 0.059992 Loss(val): 0.060942
  278. [20:20:27] Epoch 14: Loss(train): 0.059627 Loss(val): 0.060763
  279. [20:24:29] Epoch 16: Loss(train): 0.059573 Loss(val): 0.060785
  280. [20:28:31] Epoch 18: Loss(train): 0.059532 Loss(val): 0.060666
  281. [20:34:27] Epoch 20: Loss(train): 0.058798 Loss(val): 0.059861
  282. [20:41:03] Epoch 22: Loss(train): 0.058062 Loss(val): 0.059021
  283. [20:46:14] Epoch 24: Loss(train): 0.057693 Loss(val): 0.058506
  284. [20:50:45] Epoch 26: Loss(train): 0.057584 Loss(val): 0.058362
  285. [20:54:59] Epoch 28: Loss(train): 0.057410 Loss(val): 0.058215
  286. [20:59:00] Epoch 30: Loss(train): 0.057174 Loss(val): 0.057987
  287. [21:03:40] Epoch 32: Loss(train): 0.057070 Loss(val): 0.057808
  288. [21:10:36] Epoch 34: Loss(train): 0.057235 Loss(val): 0.057774
  289. [21:16:08] Epoch 36: Loss(train): 0.057474 Loss(val): 0.057816
  290. [21:21:06] Epoch 38: Loss(train): 0.057530 Loss(val): 0.057807
  291. [21:25:37] Epoch 40: Loss(train): 0.057105 Loss(val): 0.057592
  292. [21:26:04] FINAL(40) Loss(val): 0.057592 Accuarcy: 0.591735
  293. Search 14 of 500
  294. momentum0.9, features=[32, 32, 32], dropout_rate=0.6
  295. kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.01
  296. [21:26:59] INIT Loss(val): 0.122847 Accuarcy: 0.101803
  297. [21:29:56] Epoch 2: Loss(train): 0.064045 Loss(val): 0.063516
  298. [21:33:02] Epoch 4: Loss(train): 0.056780 Loss(val): 0.055908
  299. [21:36:53] Epoch 6: Loss(train): 0.054376 Loss(val): 0.053519
  300. [21:42:25] Epoch 8: Loss(train): 0.052633 Loss(val): 0.051863
  301. [21:47:10] Epoch 10: Loss(train): 0.051527 Loss(val): 0.050836
  302. [21:51:13] Epoch 12: Loss(train): 0.050602 Loss(val): 0.049957
  303. [21:54:56] Epoch 14: Loss(train): 0.050027 Loss(val): 0.049464
  304. [21:58:20] Epoch 16: Loss(train): 0.049429 Loss(val): 0.048945
  305. [22:01:33] Epoch 18: Loss(train): 0.048902 Loss(val): 0.048480
  306. [22:04:43] Epoch 20: Loss(train): 0.048485 Loss(val): 0.048132
  307. [22:07:56] Epoch 22: Loss(train): 0.048165 Loss(val): 0.047822
  308. [22:11:08] Epoch 24: Loss(train): 0.047914 Loss(val): 0.047628
  309. [22:14:30] Epoch 26: Loss(train): 0.047709 Loss(val): 0.047426
  310. [22:17:49] Epoch 28: Loss(train): 0.047584 Loss(val): 0.047305
  311. [22:21:12] Epoch 30: Loss(train): 0.047354 Loss(val): 0.047143
  312. Early stopping with Loss(train) 0.050260 at epoch 31 (Accuracy: 0.503571)
  313. Search 15 of 500
  314. momentum0.98, features=[32, 64, 128], dropout_rate=0.1
  315. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
  316. [22:23:39] INIT Loss(val): 0.218097 Accuarcy: 0.093946
  317. [22:31:36] Epoch 2: Loss(train): 0.072229 Loss(val): 0.072008
  318. [22:42:38] Epoch 4: Loss(train): 0.066523 Loss(val): 0.066956
  319. [22:51:18] Epoch 6: Loss(train): 0.064689 Loss(val): 0.065551
  320. [22:59:03] Epoch 8: Loss(train): 0.063820 Loss(val): 0.064851
  321. [23:08:26] Epoch 10: Loss(train): 0.063226 Loss(val): 0.064352
  322. [23:17:54] Epoch 12: Loss(train): 0.062768 Loss(val): 0.063999
  323. [23:26:17] Epoch 14: Loss(train): 0.062558 Loss(val): 0.063801
  324. [23:34:03] Epoch 16: Loss(train): 0.062267 Loss(val): 0.063589
  325. [23:44:32] Epoch 18: Loss(train): 0.061969 Loss(val): 0.063301
  326. [23:53:31] Epoch 20: Loss(train): 0.061649 Loss(val): 0.062996
  327. [00:01:31] Epoch 22: Loss(train): 0.061327 Loss(val): 0.062696
  328. [00:11:05] Epoch 24: Loss(train): 0.060975 Loss(val): 0.062371
  329. [00:20:49] Epoch 26: Loss(train): 0.060806 Loss(val): 0.062130
  330. [00:29:09] Epoch 28: Loss(train): 0.060544 Loss(val): 0.061854
  331. [00:37:04] Epoch 30: Loss(train): 0.060328 Loss(val): 0.061611
  332. [00:48:06] Epoch 32: Loss(train): 0.060126 Loss(val): 0.061430
  333. [00:57:20] Epoch 34: Loss(train): 0.059966 Loss(val): 0.061301
  334. [01:05:24] Epoch 36: Loss(train): 0.059804 Loss(val): 0.061190
  335. [01:16:04] Epoch 38: Loss(train): 0.059661 Loss(val): 0.061111
  336. [01:25:57] Epoch 40: Loss(train): 0.059557 Loss(val): 0.061046
  337. [01:27:07] FINAL(40) Loss(val): 0.061046 Accuarcy: 0.573963
  338. Search 16 of 500
  339. momentum0.94, features=[64, 64, 64], dropout_rate=0.8
  340. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
  341. [01:29:00] INIT Loss(val): 0.151834 Accuarcy: 0.108827
  342. [01:33:32] Epoch 2: Loss(train): 0.110386 Loss(val): 0.113633
  343. [01:38:13] Epoch 4: Loss(train): 0.106996 Loss(val): 0.110476
  344. [01:44:49] Epoch 6: Loss(train): 0.100696 Loss(val): 0.104549
  345. [01:52:04] Epoch 8: Loss(train): 0.094171 Loss(val): 0.098184
  346. [01:58:26] Epoch 10: Loss(train): 0.089803 Loss(val): 0.093782
  347. [02:03:44] Epoch 12: Loss(train): 0.087074 Loss(val): 0.091006
  348. [02:08:33] Epoch 14: Loss(train): 0.085113 Loss(val): 0.088931
  349. [02:13:20] Epoch 16: Loss(train): 0.083500 Loss(val): 0.087246
  350. [02:21:19] Epoch 18: Loss(train): 0.081911 Loss(val): 0.085563
  351. [02:28:13] Epoch 20: Loss(train): 0.080556 Loss(val): 0.084120
  352. [02:34:03] Epoch 22: Loss(train): 0.079362 Loss(val): 0.082816
  353. [02:39:08] Epoch 24: Loss(train): 0.078311 Loss(val): 0.081671
  354. [02:43:58] Epoch 26: Loss(train): 0.077400 Loss(val): 0.080661
  355. [02:49:40] Epoch 28: Loss(train): 0.076570 Loss(val): 0.079715
  356. [02:57:52] Epoch 30: Loss(train): 0.075883 Loss(val): 0.078951
  357. [03:04:07] Epoch 32: Loss(train): 0.075348 Loss(val): 0.078346
  358. [03:09:39] Epoch 34: Loss(train): 0.074812 Loss(val): 0.077732
  359. [03:14:37] Epoch 36: Loss(train): 0.074405 Loss(val): 0.077256
  360. [03:19:32] Epoch 38: Loss(train): 0.074032 Loss(val): 0.076837
  361. [03:27:14] Epoch 40: Loss(train): 0.073680 Loss(val): 0.076428
  362. [03:28:09] FINAL(40) Loss(val): 0.076428 Accuarcy: 0.274915
  363. Search 17 of 500
  364. momentum0.9, features=[64, 64, 64], dropout_rate=0.4
  365. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.03
  366. [03:29:53] INIT Loss(val): 0.131165 Accuarcy: 0.093435
  367. [03:41:05] Epoch 2: Loss(train): 0.068231 Loss(val): 0.066406
  368. [03:51:07] Epoch 4: Loss(train): 0.064709 Loss(val): 0.062722
  369. [04:06:03] Epoch 6: Loss(train): 0.062242 Loss(val): 0.060431
  370. [04:17:27] Epoch 8: Loss(train): 0.060373 Loss(val): 0.058780
  371. [04:28:16] Epoch 10: Loss(train): 0.059085 Loss(val): 0.057533
  372. [04:43:05] Epoch 12: Loss(train): 0.058318 Loss(val): 0.056778
  373. [04:53:42] Epoch 14: Loss(train): 0.057390 Loss(val): 0.055989
  374. [05:06:46] Epoch 16: Loss(train): 0.056481 Loss(val): 0.055205
  375. [05:19:57] Epoch 18: Loss(train): 0.055879 Loss(val): 0.054648
  376. [05:30:13] Epoch 20: Loss(train): 0.055364 Loss(val): 0.054170
  377. [05:45:34] Epoch 22: Loss(train): 0.054641 Loss(val): 0.053574
  378. [05:56:57] Epoch 24: Loss(train): 0.054031 Loss(val): 0.053062
  379. [06:07:12] Epoch 26: Loss(train): 0.053433 Loss(val): 0.052634
  380. Early stopping with Loss(train) 0.054989 at epoch 27 (Accuracy: 0.557653)
  381. Search 18 of 500
  382. momentum0.92, features=[32, 32, 32], dropout_rate=0.3
  383. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
  384. [06:15:45] INIT Loss(val): 0.118689 Accuarcy: 0.101990
  385. [06:19:38] Epoch 2: Loss(train): 0.068195 Loss(val): 0.069483
  386. [06:23:52] Epoch 4: Loss(train): 0.062983 Loss(val): 0.063813
  387. [06:28:34] Epoch 6: Loss(train): 0.060712 Loss(val): 0.061474
  388. [06:34:45] Epoch 8: Loss(train): 0.059224 Loss(val): 0.060002
  389. [06:39:41] Epoch 10: Loss(train): 0.058208 Loss(val): 0.059001
  390. [06:44:28] Epoch 12: Loss(train): 0.057323 Loss(val): 0.058152
  391. [06:48:47] Epoch 14: Loss(train): 0.056700 Loss(val): 0.057535
  392. [06:52:56] Epoch 16: Loss(train): 0.056110 Loss(val): 0.056953
  393. [06:57:00] Epoch 18: Loss(train): 0.055600 Loss(val): 0.056486
  394. [07:01:11] Epoch 20: Loss(train): 0.055162 Loss(val): 0.056064
  395. [07:07:25] Epoch 22: Loss(train): 0.054831 Loss(val): 0.055762
  396. [07:12:41] Epoch 24: Loss(train): 0.054532 Loss(val): 0.055485
  397. [07:17:21] Epoch 26: Loss(train): 0.054293 Loss(val): 0.055247
  398. [07:21:44] Epoch 28: Loss(train): 0.054086 Loss(val): 0.055038
  399. [07:25:57] Epoch 30: Loss(train): 0.053895 Loss(val): 0.054867
  400. [07:30:12] Epoch 32: Loss(train): 0.053734 Loss(val): 0.054717
  401. [07:35:30] Epoch 34: Loss(train): 0.053598 Loss(val): 0.054584
  402. [07:41:27] Epoch 36: Loss(train): 0.053484 Loss(val): 0.054487
  403. [07:46:25] Epoch 38: Loss(train): 0.053388 Loss(val): 0.054393
  404. [07:50:59] Epoch 40: Loss(train): 0.053292 Loss(val): 0.054313
  405. [07:51:26] FINAL(40) Loss(val): 0.054313 Accuarcy: 0.432704
  406. Search 19 of 500
  407. momentum0.9, features=[96, 192, 192], dropout_rate=0.4
  408. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
  409. [07:52:19] INIT Loss(val): 0.174489 Accuarcy: 0.104456
  410. [08:05:37] Epoch 2: Loss(train): 0.102096 Loss(val): 0.102915
  411. [08:21:51] Epoch 4: Loss(train): 0.066749 Loss(val): 0.065971
  412. [08:35:13] Epoch 6: Loss(train): 0.055856 Loss(val): 0.055964
  413. [08:52:20] Epoch 8: Loss(train): 0.047794 Loss(val): 0.047813
  414. [09:05:42] Epoch 10: Loss(train): 0.041983 Loss(val): 0.042211
  415. [09:23:11] Epoch 12: Loss(train): 0.037630 Loss(val): 0.038138
  416. [09:36:57] Epoch 14: Loss(train): 0.034115 Loss(val): 0.034479
  417. [09:55:56] Epoch 16: Loss(train): 0.032334 Loss(val): 0.032522
  418. [10:09:49] Epoch 18: Loss(train): 0.030284 Loss(val): 0.030510
  419. [10:29:29] Epoch 20: Loss(train): 0.028992 Loss(val): 0.029348
  420. [10:43:10] Epoch 22: Loss(train): 0.028101 Loss(val): 0.028161
  421. [11:02:49] Epoch 24: Loss(train): 0.027532 Loss(val): 0.027852
  422. Early stopping with Loss(train) 0.028088 at epoch 25 (Accuracy: 0.567806)
  423. Search 20 of 500
  424. momentum0.9, features=[96, 192, 192], dropout_rate=0.6
  425. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
  426. [11:12:09] INIT Loss(val): 0.158469 Accuarcy: 0.092806
  427. [11:25:25] Epoch 2: Loss(train): 0.092062 Loss(val): 0.091566
  428. [11:38:25] Epoch 4: Loss(train): 0.081868 Loss(val): 0.081678
  429. [11:49:01] Epoch 6: Loss(train): 0.076118 Loss(val): 0.075529
  430. [12:04:29] Epoch 8: Loss(train): 0.073110 Loss(val): 0.072846
  431. [12:16:23] Epoch 10: Loss(train): 0.069156 Loss(val): 0.069085
  432. [12:30:09] Epoch 12: Loss(train): 0.066856 Loss(val): 0.067039
  433. [12:44:01] Epoch 14: Loss(train): 0.065261 Loss(val): 0.065455
  434. [12:54:52] Epoch 16: Loss(train): 0.063509 Loss(val): 0.064036
  435. [13:10:55] Epoch 18: Loss(train): 0.061315 Loss(val): 0.061605
  436. [13:22:43] Epoch 20: Loss(train): 0.059638 Loss(val): 0.059675
  437. [13:36:46] Epoch 22: Loss(train): 0.058390 Loss(val): 0.058582
  438. [13:50:21] Epoch 24: Loss(train): 0.057187 Loss(val): 0.057440
  439. [14:01:25] Epoch 26: Loss(train): 0.056083 Loss(val): 0.056261
  440. [14:12:57] Epoch 28: Loss(train): 0.055120 Loss(val): 0.055430
  441. [14:25:54] Epoch 30: Loss(train): 0.054959 Loss(val): 0.055094
  442. [14:40:39] Epoch 32: Loss(train): 0.054236 Loss(val): 0.054509
  443. [14:52:26] Epoch 34: Loss(train): 0.053323 Loss(val): 0.053676
  444. [15:04:28] Epoch 36: Loss(train): 0.052686 Loss(val): 0.053072
  445. [15:18:03] Epoch 38: Loss(train): 0.051935 Loss(val): 0.052419
  446. [15:29:22] Epoch 40: Loss(train): 0.051245 Loss(val): 0.051794
  447. [15:30:12] FINAL(40) Loss(val): 0.051794 Accuarcy: 0.634048
  448. Search 21 of 500
  449. momentum0.99, features=[96, 192, 192], dropout_rate=0.3
  450. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
  451. [15:31:35] INIT Loss(val): 0.245048 Accuarcy: 0.072585
  452. [15:49:17] Epoch 2: Loss(train): 0.106915 Loss(val): 0.105428
  453. [16:05:12] Epoch 4: Loss(train): 0.089091 Loss(val): 0.088908
  454. [16:23:07] Epoch 6: Loss(train): 0.075282 Loss(val): 0.074277
  455. [16:40:46] Epoch 8: Loss(train): 0.062850 Loss(val): 0.062624
  456. [16:58:29] Epoch 10: Loss(train): 0.056189 Loss(val): 0.056083
  457. [17:17:16] Epoch 12: Loss(train): 0.049655 Loss(val): 0.049626
  458. [17:34:08] Epoch 14: Loss(train): 0.045409 Loss(val): 0.045518
  459. [17:54:19] Epoch 16: Loss(train): 0.042162 Loss(val): 0.042254
  460. [18:10:02] Epoch 18: Loss(train): 0.039818 Loss(val): 0.040065
  461. [18:30:42] Epoch 20: Loss(train): 0.038585 Loss(val): 0.038927
  462. [18:46:52] Epoch 22: Loss(train): 0.038263 Loss(val): 0.038389
  463. [19:07:10] Epoch 24: Loss(train): 0.034990 Loss(val): 0.035632
  464. [19:25:45] Epoch 26: Loss(train): 0.034374 Loss(val): 0.035082
  465. [19:43:48] Epoch 28: Loss(train): 0.033463 Loss(val): 0.033584
  466. [20:03:44] Epoch 30: Loss(train): 0.032233 Loss(val): 0.032437
  467. [20:20:20] Epoch 32: Loss(train): 0.033065 Loss(val): 0.032645
  468. [20:41:38] Epoch 34: Loss(train): 0.032210 Loss(val): 0.032403
  469. [20:58:04] Epoch 36: Loss(train): 0.031725 Loss(val): 0.032099
  470. [21:18:34] Epoch 38: Loss(train): 0.030471 Loss(val): 0.030934
  471. [21:36:54] Epoch 40: Loss(train): 0.030312 Loss(val): 0.030813
  472. [21:38:37] FINAL(40) Loss(val): 0.030813 Accuarcy: 0.600442
  473. Search 22 of 500
  474. momentum0.98, features=[96, 192, 192], dropout_rate=0.1
  475. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
  476. [21:41:08] INIT Loss(val): 0.164662 Accuarcy: 0.097636
  477. [21:57:03] Epoch 2: Loss(train): 20.748877 Loss(val): 20.759123
  478. [22:12:28] Epoch 4: Loss(train): 27.568346 Loss(val): 27.566154
  479. [22:30:34] Epoch 6: Loss(train): 28.220102 Loss(val): 28.217909
  480. [22:48:10] Epoch 8: Loss(train): 67.155548 Loss(val): 67.165779
  481. [23:07:08] Epoch 10: Loss(train): 67.068855 Loss(val): 67.079079
  482. [23:23:42] Epoch 12: Loss(train): 66.994072 Loss(val): 67.004318
  483. [23:43:22] Epoch 14: Loss(train): 66.931145 Loss(val): 66.941414
  484. [23:59:21] Epoch 16: Loss(train): 66.875031 Loss(val): 66.885284
  485. [00:19:03] Epoch 18: Loss(train): 66.825371 Loss(val): 66.835571
  486. [00:36:41] Epoch 20: Loss(train): 66.781197 Loss(val): 66.791435
  487. [00:54:54] Epoch 22: Loss(train): 66.741692 Loss(val): 66.751991
  488. [01:15:18] Epoch 24: Loss(train): 66.706535 Loss(val): 66.716827
  489. [01:32:32] Epoch 26: Loss(train): 66.675232 Loss(val): 66.685478
  490. [01:54:11] Epoch 28: Loss(train): 66.647171 Loss(val): 66.657463
  491. [02:12:09] Epoch 30: Loss(train): 66.621796 Loss(val): 66.632065
  492. [02:32:33] Epoch 32: Loss(train): 66.598854 Loss(val): 66.609077
  493. [02:53:21] Epoch 34: Loss(train): 66.578270 Loss(val): 66.588493
  494. [03:10:47] Epoch 36: Loss(train): 66.560196 Loss(val): 66.570473
  495. [03:33:05] Epoch 38: Loss(train): 66.544395 Loss(val): 66.554642
  496. [03:51:21] Epoch 40: Loss(train): 66.530609 Loss(val): 66.540833
  497. [03:53:19] FINAL(40) Loss(val): 66.540833 Accuarcy: 0.080357
  498. Search 23 of 500
  499. momentum0.99, features=[64, 64, 64], dropout_rate=0.3
  500. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
  501. [03:56:53] INIT Loss(val): 0.156261 Accuarcy: 0.086173
  502. [04:05:45] Epoch 2: Loss(train): 0.079105 Loss(val): 0.076430
  503. [04:12:50] Epoch 4: Loss(train): 0.067922 Loss(val): 0.066296
  504. [04:19:22] Epoch 6: Loss(train): 0.062268 Loss(val): 0.061061
  505. [04:29:48] Epoch 8: Loss(train): 0.059802 Loss(val): 0.059280
  506. [04:39:00] Epoch 10: Loss(train): 0.059741 Loss(val): 0.059402
  507. [04:46:13] Epoch 12: Loss(train): 0.058659 Loss(val): 0.058159
  508. [04:52:49] Epoch 14: Loss(train): 0.057998 Loss(val): 0.057408
  509. [05:03:34] Epoch 16: Loss(train): 0.057697 Loss(val): 0.057173
  510. [05:12:41] Epoch 18: Loss(train): 0.058854 Loss(val): 0.058166
  511. [05:19:47] Epoch 20: Loss(train): 0.056203 Loss(val): 0.056039
  512. [05:26:30] Epoch 22: Loss(train): 0.056706 Loss(val): 0.056652
  513. [05:37:03] Epoch 24: Loss(train): 0.057241 Loss(val): 0.057240
  514. [05:45:12] Epoch 26: Loss(train): 0.056111 Loss(val): 0.055896
  515. [05:52:35] Epoch 28: Loss(train): 0.054545 Loss(val): 0.054455
  516. [05:59:21] Epoch 30: Loss(train): 0.053666 Loss(val): 0.053996
  517. [06:06:18] Epoch 32: Loss(train): 0.055091 Loss(val): 0.055624
  518. [06:13:18] Epoch 34: Loss(train): 0.054184 Loss(val): 0.054805
  519. [06:20:29] Epoch 36: Loss(train): 0.052324 Loss(val): 0.052880
  520. [06:30:01] Epoch 38: Loss(train): 0.051825 Loss(val): 0.052219
  521. [06:38:57] Epoch 40: Loss(train): 0.050568 Loss(val): 0.051316
  522. [06:39:40] FINAL(40) Loss(val): 0.051316 Accuarcy: 0.649643
  523. Search 24 of 500
  524. momentum0.96, features=[32, 64, 128], dropout_rate=0.8
  525. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.03
  526. [06:41:03] INIT Loss(val): 0.188385 Accuarcy: 0.083690
  527. [06:52:54] Epoch 2: Loss(train): 0.072349 Loss(val): 0.071118
  528. [07:08:32] Epoch 4: Loss(train): 0.064639 Loss(val): 0.063467
  529. [07:21:35] Epoch 6: Loss(train): 0.061816 Loss(val): 0.060563
  530. [07:37:04] Epoch 8: Loss(train): 0.058359 Loss(val): 0.057653
  531. [07:50:18] Epoch 10: Loss(train): 0.057401 Loss(val): 0.056310
  532. [08:04:59] Epoch 12: Loss(train): 0.056189 Loss(val): 0.055490
  533. [08:19:04] Epoch 14: Loss(train): 0.054788 Loss(val): 0.054267
  534. [08:33:18] Epoch 16: Loss(train): 0.054138 Loss(val): 0.053642
  535. [08:48:22] Epoch 18: Loss(train): 0.053486 Loss(val): 0.052964
  536. [09:01:45] Epoch 20: Loss(train): 0.053176 Loss(val): 0.052770
  537. [09:19:46] Epoch 22: Loss(train): 0.052395 Loss(val): 0.052135
  538. [09:32:18] Epoch 24: Loss(train): 0.052084 Loss(val): 0.051754
  539. [09:50:48] Epoch 26: Loss(train): 0.051454 Loss(val): 0.051278
  540. [10:03:51] Epoch 28: Loss(train): 0.051378 Loss(val): 0.051049
  541. [10:22:26] Epoch 30: Loss(train): 0.051123 Loss(val): 0.050865
  542. [10:35:48] Epoch 32: Loss(train): 0.050678 Loss(val): 0.050489
  543. [10:54:01] Epoch 34: Loss(train): 0.050485 Loss(val): 0.050431
  544. [11:07:16] Epoch 36: Loss(train): 0.050130 Loss(val): 0.050041
  545. [11:25:31] Epoch 38: Loss(train): 0.050138 Loss(val): 0.049954
  546. [11:39:24] Epoch 40: Loss(train): 0.049971 Loss(val): 0.049950
  547. [11:40:54] FINAL(40) Loss(val): 0.049950 Accuarcy: 0.656633
  548. Search 25 of 500
  549. momentum0.94, features=[96, 192, 192], dropout_rate=0.4
  550. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
  551. [11:43:33] INIT Loss(val): 0.206394 Accuarcy: 0.087228
  552. [11:52:00] Epoch 2: Loss(train): 0.101289 Loss(val): 0.103436
  553. [11:59:34] Epoch 4: Loss(train): 0.080375 Loss(val): 0.080668
  554. [12:05:42] Epoch 6: Loss(train): 0.071989 Loss(val): 0.073021
  555. [12:11:22] Epoch 8: Loss(train): 0.067130 Loss(val): 0.066621
  556. [12:17:03] Epoch 10: Loss(train): 0.062482 Loss(val): 0.062284
  557. [12:26:05] Epoch 12: Loss(train): 0.059126 Loss(val): 0.059354
  558. [12:33:42] Epoch 14: Loss(train): 0.054605 Loss(val): 0.055075
  559. [12:40:10] Epoch 16: Loss(train): 0.052491 Loss(val): 0.053066
  560. [12:46:25] Epoch 18: Loss(train): 0.050310 Loss(val): 0.050966
  561. [12:52:38] Epoch 20: Loss(train): 0.048141 Loss(val): 0.048782
  562. [12:59:55] Epoch 22: Loss(train): 0.046192 Loss(val): 0.047045
  563. [13:06:18] Epoch 24: Loss(train): 0.044195 Loss(val): 0.045356
  564. [13:12:35] Epoch 26: Loss(train): 0.043286 Loss(val): 0.044734
  565. [13:18:26] Epoch 28: Loss(train): 0.042307 Loss(val): 0.043518
  566. [13:24:05] Epoch 30: Loss(train): 0.041010 Loss(val): 0.042333
  567. [13:31:27] Epoch 32: Loss(train): 0.040678 Loss(val): 0.042079
  568. [13:38:43] Epoch 34: Loss(train): 0.039944 Loss(val): 0.041404
  569. [13:45:18] Epoch 36: Loss(train): 0.039505 Loss(val): 0.040942
  570. [13:51:09] Epoch 38: Loss(train): 0.039001 Loss(val): 0.040541
  571. [13:56:48] Epoch 40: Loss(train): 0.038627 Loss(val): 0.040171
  572. [13:57:14] FINAL(40) Loss(val): 0.040171 Accuarcy: 0.615595
  573. Search 26 of 500
  574. momentum0.99, features=[64, 64, 64], dropout_rate=0.1
  575. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.03
  576. [13:58:10] INIT Loss(val): 0.150567 Accuarcy: 0.075561
  577. [14:05:36] Epoch 2: Loss(train): 0.109244 Loss(val): 0.109046
  578. [14:13:33] Epoch 4: Loss(train): 0.069782 Loss(val): 0.068761
  579. [14:21:46] Epoch 6: Loss(train): 0.057850 Loss(val): 0.057034
  580. [14:32:51] Epoch 8: Loss(train): 0.053643 Loss(val): 0.053023
  581. [14:41:22] Epoch 10: Loss(train): 0.051602 Loss(val): 0.051370
  582. [14:49:15] Epoch 12: Loss(train): 0.051565 Loss(val): 0.051038
  583. [14:56:52] Epoch 14: Loss(train): 0.050527 Loss(val): 0.050176
  584. [15:08:13] Epoch 16: Loss(train): 0.047978 Loss(val): 0.047917
  585. [15:16:48] Epoch 18: Loss(train): 0.046836 Loss(val): 0.046800
  586. [15:24:29] Epoch 20: Loss(train): 0.049216 Loss(val): 0.049681
  587. [15:34:18] Epoch 22: Loss(train): 0.044710 Loss(val): 0.045216
  588. [15:43:20] Epoch 24: Loss(train): 0.046563 Loss(val): 0.047376
  589. [15:51:33] Epoch 26: Loss(train): 0.042391 Loss(val): 0.042913
  590. [15:59:26] Epoch 28: Loss(train): 0.041383 Loss(val): 0.041802
  591. [16:09:13] Epoch 30: Loss(train): 0.040634 Loss(val): 0.041065
  592. [16:18:52] Epoch 32: Loss(train): 0.039923 Loss(val): 0.040496
  593. [16:27:03] Epoch 34: Loss(train): 0.040688 Loss(val): 0.042053
  594. [16:34:46] Epoch 36: Loss(train): 0.038398 Loss(val): 0.039507
  595. [16:45:25] Epoch 38: Loss(train): 0.037850 Loss(val): 0.038930
  596. [16:53:54] Epoch 40: Loss(train): 0.038935 Loss(val): 0.039747
  597. [16:54:57] FINAL(40) Loss(val): 0.039747 Accuarcy: 0.614592
  598. Search 27 of 500
  599. momentum0.98, features=[96, 192, 192], dropout_rate=0.1
  600. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.03
  601. [16:56:34] INIT Loss(val): 0.134213 Accuarcy: 0.091514
  602. [17:02:28] Epoch 2: Loss(train): 0.090860 Loss(val): 0.090545
  603. [17:08:42] Epoch 4: Loss(train): 0.078672 Loss(val): 0.076943
  604. [17:16:48] Epoch 6: Loss(train): 0.069592 Loss(val): 0.068936
  605. [17:23:32] Epoch 8: Loss(train): 0.066346 Loss(val): 0.065861
  606. [17:29:47] Epoch 10: Loss(train): 0.064795 Loss(val): 0.064491
  607. [17:35:36] Epoch 12: Loss(train): 0.063546 Loss(val): 0.063492
  608. [17:43:11] Epoch 14: Loss(train): 0.062957 Loss(val): 0.062895
  609. [17:50:18] Epoch 16: Loss(train): 0.062168 Loss(val): 0.062227
  610. [17:56:49] Epoch 18: Loss(train): 0.061885 Loss(val): 0.061934
  611. [18:02:49] Epoch 20: Loss(train): 0.061532 Loss(val): 0.061760
  612. Early stopping with Loss(train) 0.061861 at epoch 20 (Accuracy: 0.608146)
  613. Search 28 of 500
  614. momentum0.9, features=[64, 64, 64], dropout_rate=0.4
  615. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
  616. [18:04:05] INIT Loss(val): 0.128106 Accuarcy: 0.102738
  617. [18:12:15] Epoch 2: Loss(train): 0.074689 Loss(val): 0.075390
  618. [18:24:22] Epoch 4: Loss(train): 0.068198 Loss(val): 0.068720
  619. [18:33:08] Epoch 6: Loss(train): 0.066180 Loss(val): 0.066643
  620. [18:40:59] Epoch 8: Loss(train): 0.064997 Loss(val): 0.065444
  621. [18:53:03] Epoch 10: Loss(train): 0.064207 Loss(val): 0.064619
  622. [19:02:48] Epoch 12: Loss(train): 0.063483 Loss(val): 0.063943
  623. [19:10:44] Epoch 14: Loss(train): 0.063037 Loss(val): 0.063462
  624. [19:21:21] Epoch 16: Loss(train): 0.062571 Loss(val): 0.063062
  625. [19:32:27] Epoch 18: Loss(train): 0.062316 Loss(val): 0.062758
  626. [19:41:00] Epoch 20: Loss(train): 0.061978 Loss(val): 0.062450
  627. [19:49:41] Epoch 22: Loss(train): 0.061717 Loss(val): 0.062215
  628. [20:02:18] Epoch 24: Loss(train): 0.061504 Loss(val): 0.062028
  629. [20:11:17] Epoch 26: Loss(train): 0.061352 Loss(val): 0.061835
  630. [20:19:18] Epoch 28: Loss(train): 0.061151 Loss(val): 0.061692
  631. [20:31:40] Epoch 30: Loss(train): 0.061015 Loss(val): 0.061562
  632. [20:41:43] Epoch 32: Loss(train): 0.060934 Loss(val): 0.061451
  633. [20:49:44] Epoch 34: Loss(train): 0.060828 Loss(val): 0.061372
  634. [21:01:36] Epoch 36: Loss(train): 0.060729 Loss(val): 0.061282
  635. [21:11:39] Epoch 38: Loss(train): 0.060642 Loss(val): 0.061227
  636. [21:20:03] Epoch 40: Loss(train): 0.060570 Loss(val): 0.061159
  637. [21:20:56] FINAL(40) Loss(val): 0.061159 Accuarcy: 0.525493
  638. Search 29 of 500
  639. momentum0.92, features=[32, 32, 32], dropout_rate=0.4
  640. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
  641. [21:22:36] INIT Loss(val): 0.137907 Accuarcy: 0.095374
  642. [21:31:00] Epoch 2: Loss(train): 0.065825 Loss(val): 0.066324
  643. [21:40:00] Epoch 4: Loss(train): 0.058934 Loss(val): 0.057341
  644. [21:47:02] Epoch 6: Loss(train): 0.051880 Loss(val): 0.052709
  645. [21:52:58] Epoch 8: Loss(train): 0.044297 Loss(val): 0.045645
  646. [21:58:54] Epoch 10: Loss(train): 0.041006 Loss(val): 0.042122
  647. [22:04:54] Epoch 12: Loss(train): 0.040873 Loss(val): 0.042592
  648. [22:10:53] Epoch 14: Loss(train): 0.037040 Loss(val): 0.038307
  649. [22:17:16] Epoch 16: Loss(train): 0.039913 Loss(val): 0.042390
  650. [22:24:29] Epoch 18: Loss(train): 0.031755 Loss(val): 0.033696
  651. [22:32:00] Epoch 20: Loss(train): 0.030639 Loss(val): 0.030783
  652. [22:39:06] Epoch 22: Loss(train): 0.028381 Loss(val): 0.028629
  653. [22:45:35] Epoch 24: Loss(train): 0.027468 Loss(val): 0.027725
  654. [22:51:38] Epoch 26: Loss(train): 0.025523 Loss(val): 0.025599
  655. [23:00:27] Epoch 28: Loss(train): 0.025676 Loss(val): 0.025638
  656. [23:07:41] Epoch 30: Loss(train): 0.025141 Loss(val): 0.025392
  657. [23:14:21] Epoch 32: Loss(train): 0.024193 Loss(val): 0.024012
  658. [23:20:33] Epoch 34: Loss(train): 0.023470 Loss(val): 0.023429
  659. [23:28:02] Epoch 36: Loss(train): 0.022927 Loss(val): 0.022909
  660. [23:36:20] Epoch 38: Loss(train): 0.022175 Loss(val): 0.022574
  661. [23:43:15] Epoch 40: Loss(train): 0.021259 Loss(val): 0.021576
  662. [23:43:50] FINAL(40) Loss(val): 0.021576 Accuarcy: 0.537568
  663. Search 30 of 500
  664. momentum0.96, features=[96, 192, 192], dropout_rate=0.3
  665. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
  666. [23:44:59] INIT Loss(val): 0.157926 Accuarcy: 0.096905
  667. [00:07:35] Epoch 2: Loss(train): 0.083815 Loss(val): 0.085143
  668. [00:30:44] Epoch 4: Loss(train): 0.066922 Loss(val): 0.068693
  669. [00:54:18] Epoch 6: Loss(train): 0.062800 Loss(val): 0.064619
  670. [01:19:21] Epoch 8: Loss(train): 0.055423 Loss(val): 0.056209
  671. [01:45:26] Epoch 10: Loss(train): 0.051950 Loss(val): 0.052295
  672. [02:10:56] Epoch 12: Loss(train): 0.048478 Loss(val): 0.050152
  673. [02:34:46] Epoch 14: Loss(train): 0.049978 Loss(val): 0.049653
  674. [03:01:13] Epoch 16: Loss(train): 0.043648 Loss(val): 0.045337
  675. [03:29:02] Epoch 18: Loss(train): 0.045327 Loss(val): 0.048296
  676. [03:56:01] Epoch 20: Loss(train): 0.045312 Loss(val): 0.048873
  677. [04:21:49] Epoch 22: Loss(train): 0.040705 Loss(val): 0.040873
  678. [04:45:42] Epoch 24: Loss(train): 0.046981 Loss(val): 0.049900
  679. [05:12:34] Epoch 26: Loss(train): 0.038865 Loss(val): 0.040929
  680. [05:38:34] Epoch 28: Loss(train): 0.030650 Loss(val): 0.030977
  681. [06:00:05] Epoch 30: Loss(train): 0.030971 Loss(val): 0.032735
  682. [06:25:37] Epoch 32: Loss(train): 0.032108 Loss(val): 0.030270
  683. [06:50:02] Epoch 34: Loss(train): 0.029535 Loss(val): 0.028256
  684. [07:13:34] Epoch 36: Loss(train): 0.025526 Loss(val): 0.024374
  685. [07:38:32] Epoch 38: Loss(train): 0.025246 Loss(val): 0.023842
  686. [08:03:25] Epoch 40: Loss(train): 0.024390 Loss(val): 0.023580
  687. [08:05:38] FINAL(40) Loss(val): 0.023580 Accuarcy: 0.518469
  688. Search 31 of 500
  689. momentum0.98, features=[64, 64, 64], dropout_rate=0.6
  690. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
  691. [08:08:47] INIT Loss(val): 0.136395 Accuarcy: 0.102109
  692. [08:16:59] Epoch 2: Loss(train): 0.083085 Loss(val): 0.084971
  693. [08:28:48] Epoch 4: Loss(train): 0.070578 Loss(val): 0.071192
  694. [08:38:26] Epoch 6: Loss(train): 0.067818 Loss(val): 0.068311
  695. [08:47:17] Epoch 8: Loss(train): 0.066219 Loss(val): 0.066654
  696. [08:58:49] Epoch 10: Loss(train): 0.065115 Loss(val): 0.065624
  697. [09:08:46] Epoch 12: Loss(train): 0.064355 Loss(val): 0.064817
  698. [09:17:31] Epoch 14: Loss(train): 0.063803 Loss(val): 0.064206
  699. [09:28:50] Epoch 16: Loss(train): 0.063242 Loss(val): 0.063749
  700. [09:38:48] Epoch 18: Loss(train): 0.062930 Loss(val): 0.063295
  701. [09:47:45] Epoch 20: Loss(train): 0.062665 Loss(val): 0.063019
  702. [09:58:15] Epoch 22: Loss(train): 0.062384 Loss(val): 0.062730
  703. [10:09:26] Epoch 24: Loss(train): 0.062142 Loss(val): 0.062500
  704. [10:18:33] Epoch 26: Loss(train): 0.061943 Loss(val): 0.062314
  705. [10:30:07] Epoch 28: Loss(train): 0.061784 Loss(val): 0.062140
  706. [10:40:47] Epoch 30: Loss(train): 0.061690 Loss(val): 0.062006
  707. [10:50:03] Epoch 32: Loss(train): 0.061544 Loss(val): 0.061859
  708. [11:02:31] Epoch 34: Loss(train): 0.061405 Loss(val): 0.061765
  709. [11:13:54] Epoch 36: Loss(train): 0.061310 Loss(val): 0.061659
  710. Early stopping with Loss(train) 0.065227 at epoch 36 (Accuracy: 0.477653)
  711. Search 32 of 500
  712. momentum0.92, features=[32, 64, 128], dropout_rate=0.1
  713. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
  714. [11:16:41] INIT Loss(val): 0.156245 Accuarcy: 0.081514
  715. [11:35:09] Epoch 2: Loss(train): 0.075818 Loss(val): 0.075976
  716. [11:54:19] Epoch 4: Loss(train): 0.069581 Loss(val): 0.069867
  717. [12:16:03] Epoch 6: Loss(train): 0.067491 Loss(val): 0.067784
  718. [12:33:26] Epoch 8: Loss(train): 0.066309 Loss(val): 0.066613
  719. [12:55:22] Epoch 10: Loss(train): 0.065570 Loss(val): 0.065932
  720. [13:16:01] Epoch 12: Loss(train): 0.064942 Loss(val): 0.065361
  721. [13:34:16] Epoch 14: Loss(train): 0.064421 Loss(val): 0.064918
  722. [13:50:08] Epoch 16: Loss(train): 0.064045 Loss(val): 0.064583
  723. [14:10:29] Epoch 18: Loss(train): 0.063691 Loss(val): 0.064300
  724. [14:27:48] Epoch 20: Loss(train): 0.063414 Loss(val): 0.064062
  725. [14:47:52] Epoch 22: Loss(train): 0.063163 Loss(val): 0.063851
  726. [15:05:02] Epoch 24: Loss(train): 0.062957 Loss(val): 0.063692
  727. [15:25:31] Epoch 26: Loss(train): 0.062760 Loss(val): 0.063534
  728. [15:44:27] Epoch 28: Loss(train): 0.062596 Loss(val): 0.063417
  729. [16:02:11] Epoch 30: Loss(train): 0.062460 Loss(val): 0.063311
  730. [16:22:44] Epoch 32: Loss(train): 0.062348 Loss(val): 0.063210
  731. [16:40:25] Epoch 34: Loss(train): 0.062251 Loss(val): 0.063149
  732. [17:00:11] Epoch 36: Loss(train): 0.062162 Loss(val): 0.063097
  733. [17:19:44] Epoch 38: Loss(train): 0.062111 Loss(val): 0.063032
  734. [17:37:13] Epoch 40: Loss(train): 0.062047 Loss(val): 0.062991
  735. [17:39:26] FINAL(40) Loss(val): 0.062991 Accuarcy: 0.500272
  736. Search 33 of 500
  737. momentum0.94, features=[64, 64, 64], dropout_rate=0.3
  738. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
  739. [17:44:54] INIT Loss(val): 0.129508 Accuarcy: 0.087432
  740. [18:04:53] Epoch 2: Loss(train): 0.072966 Loss(val): 0.074566
  741. [18:29:05] Epoch 4: Loss(train): 0.067318 Loss(val): 0.068274
  742. [18:53:29] Epoch 6: Loss(train): 0.064862 Loss(val): 0.065613
  743. [19:14:04] Epoch 8: Loss(train): 0.063560 Loss(val): 0.064150
  744. [19:39:54] Epoch 10: Loss(train): 0.062483 Loss(val): 0.063086
  745. [20:05:05] Epoch 12: Loss(train): 0.061835 Loss(val): 0.062398
  746. [20:28:37] Epoch 14: Loss(train): 0.061281 Loss(val): 0.061852
  747. [20:50:12] Epoch 16: Loss(train): 0.060817 Loss(val): 0.061377
  748. [21:16:16] Epoch 18: Loss(train): 0.060441 Loss(val): 0.061011
  749. [21:35:17] Epoch 20: Loss(train): 0.060146 Loss(val): 0.060714
  750. [21:58:43] Epoch 22: Loss(train): 0.059869 Loss(val): 0.060446
  751. [22:20:18] Epoch 24: Loss(train): 0.059664 Loss(val): 0.060259
  752. [22:42:47] Epoch 26: Loss(train): 0.059494 Loss(val): 0.060083
  753. [23:06:12] Epoch 28: Loss(train): 0.059329 Loss(val): 0.059940
  754. Early stopping with Loss(train) 0.062314 at epoch 29 (Accuracy: 0.436071)
  755. Search 34 of 500
  756. momentum0.94, features=[64, 64, 64], dropout_rate=0.8
  757. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
  758. [23:23:32] INIT Loss(val): 0.161144 Accuarcy: 0.107738
  759. [23:47:42] Epoch 2: Loss(train): 0.079291 Loss(val): 0.079141
  760. [00:12:49] Epoch 4: Loss(train): 0.067550 Loss(val): 0.066014
  761. [00:39:19] Epoch 6: Loss(train): 0.063289 Loss(val): 0.061791
  762. [01:05:04] Epoch 8: Loss(train): 0.060796 Loss(val): 0.059554
  763. [01:31:19] Epoch 10: Loss(train): 0.059412 Loss(val): 0.058274
  764. [01:59:17] Epoch 12: Loss(train): 0.058747 Loss(val): 0.057489
  765. [02:28:58] Epoch 14: Loss(train): 0.058412 Loss(val): 0.057003
  766. [02:58:46] Epoch 16: Loss(train): 0.057484 Loss(val): 0.056236
  767. [03:28:32] Epoch 18: Loss(train): 0.057060 Loss(val): 0.055838
  768. [03:57:59] Epoch 20: Loss(train): 0.056660 Loss(val): 0.055544
  769. [04:26:58] Epoch 22: Loss(train): 0.056213 Loss(val): 0.055160
  770. [04:56:08] Epoch 24: Loss(train): 0.056014 Loss(val): 0.054934
  771. [05:21:16] Epoch 26: Loss(train): 0.055638 Loss(val): 0.054669
  772. [05:48:43] Epoch 28: Loss(train): 0.055279 Loss(val): 0.054408
  773. [06:13:58] Epoch 30: Loss(train): 0.055161 Loss(val): 0.054242
  774. [06:41:24] Epoch 32: Loss(train): 0.054907 Loss(val): 0.054066
  775. [07:08:20] Epoch 34: Loss(train): 0.054621 Loss(val): 0.053844
  776. [07:35:37] Epoch 36: Loss(train): 0.054479 Loss(val): 0.053736
  777. [08:03:00] Epoch 38: Loss(train): 0.054394 Loss(val): 0.053631
  778. [08:29:53] Epoch 40: Loss(train): 0.054193 Loss(val): 0.053513
  779. [08:32:42] FINAL(40) Loss(val): 0.053513 Accuarcy: 0.610051
  780. Search 35 of 500
  781. momentum0.94, features=[64, 64, 64], dropout_rate=0.3
  782. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
  783. [08:36:22] INIT Loss(val): 0.123761 Accuarcy: 0.091531
  784. [08:57:47] Epoch 2: Loss(train): 0.065259 Loss(val): 0.065832
  785. [09:19:41] Epoch 4: Loss(train): 0.059903 Loss(val): 0.058281
  786. [09:44:11] Epoch 6: Loss(train): 0.056566 Loss(val): 0.054878
  787. [10:10:43] Epoch 8: Loss(train): 0.053432 Loss(val): 0.052172
  788. [10:35:42] Epoch 10: Loss(train): 0.051702 Loss(val): 0.050658
  789. [10:57:51] Epoch 12: Loss(train): 0.050034 Loss(val): 0.049270
  790. [11:24:31] Epoch 14: Loss(train): 0.048701 Loss(val): 0.048126
  791. [11:51:11] Epoch 16: Loss(train): 0.047392 Loss(val): 0.047040
  792. [12:17:09] Epoch 18: Loss(train): 0.046799 Loss(val): 0.046500
  793. [12:40:51] Epoch 20: Loss(train): 0.045793 Loss(val): 0.045674
  794. [13:05:28] Epoch 22: Loss(train): 0.045341 Loss(val): 0.045252
  795. [13:25:44] Epoch 24: Loss(train): 0.044809 Loss(val): 0.044760
  796. [13:50:57] Epoch 26: Loss(train): 0.044566 Loss(val): 0.044537
  797. [14:14:24] Epoch 28: Loss(train): 0.043879 Loss(val): 0.043859
  798. [14:36:11] Epoch 30: Loss(train): 0.043258 Loss(val): 0.043268
  799. [15:00:39] Epoch 32: Loss(train): 0.042763 Loss(val): 0.042793
  800. [15:25:03] Epoch 34: Loss(train): 0.042519 Loss(val): 0.042491
  801. [15:48:44] Epoch 36: Loss(train): 0.042028 Loss(val): 0.041963
  802. [16:10:14] Epoch 38: Loss(train): 0.041775 Loss(val): 0.041745
  803. [16:34:21] Epoch 40: Loss(train): 0.041268 Loss(val): 0.041277
  804. [16:37:30] FINAL(40) Loss(val): 0.041277 Accuarcy: 0.626071
  805. Search 36 of 500
  806. momentum0.94, features=[32, 32, 32], dropout_rate=0.4
  807. kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
  808. [16:42:54] INIT Loss(val): 0.113207 Accuarcy: 0.083673
  809. [17:05:24] Epoch 2: Loss(train): 0.071602 Loss(val): 0.071321
  810. [17:30:50] Epoch 4: Loss(train): 0.060653 Loss(val): 0.061529
  811. [17:55:40] Epoch 6: Loss(train): 0.050651 Loss(val): 0.051918
  812. [18:18:57] Epoch 8: Loss(train): 0.046450 Loss(val): 0.047496
  813. [18:46:06] Epoch 10: Loss(train): 0.042359 Loss(val): 0.043354
  814. [19:13:08] Epoch 12: Loss(train): 0.038272 Loss(val): 0.038781
  815. [19:39:21] Epoch 14: Loss(train): 0.039356 Loss(val): 0.039668
  816. [20:03:45] Epoch 16: Loss(train): 0.036349 Loss(val): 0.036034
  817. [20:27:40] Epoch 18: Loss(train): 0.034223 Loss(val): 0.034151
  818. [20:55:17] Epoch 20: Loss(train): 0.032276 Loss(val): 0.032745
  819. [21:16:30] Epoch 22: Loss(train): 0.029983 Loss(val): 0.030295
  820. [21:42:49] Epoch 24: Loss(train): 0.028562 Loss(val): 0.028459
  821. [22:06:22] Epoch 26: Loss(train): 0.027147 Loss(val): 0.026862
  822. [22:29:11] Epoch 28: Loss(train): 0.025605 Loss(val): 0.025301
  823. [22:54:25] Epoch 30: Loss(train): 0.025205 Loss(val): 0.025065
  824. [23:19:33] Epoch 32: Loss(train): 0.024206 Loss(val): 0.024281
  825. [23:44:35] Epoch 34: Loss(train): 0.023469 Loss(val): 0.023604
  826. [00:07:42] Epoch 36: Loss(train): 0.022483 Loss(val): 0.022621
  827. [00:31:31] Epoch 38: Loss(train): 0.022307 Loss(val): 0.022504
  828. [00:57:02] Epoch 40: Loss(train): 0.021628 Loss(val): 0.021826
  829. [01:00:15] FINAL(40) Loss(val): 0.021826 Accuarcy: 0.606854
  830. Search 37 of 500
  831. momentum0.92, features=[64, 64, 64], dropout_rate=0.8
  832. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
  833. [01:05:55] INIT Loss(val): 0.118011 Accuarcy: 0.093418
  834. [01:28:59] Epoch 2: Loss(train): 0.071947 Loss(val): 0.071658
  835. [01:54:44] Epoch 4: Loss(train): 0.057903 Loss(val): 0.058991
  836. [02:20:57] Epoch 6: Loss(train): 0.048510 Loss(val): 0.047729
  837. [02:46:19] Epoch 8: Loss(train): 0.042900 Loss(val): 0.043739
  838. [03:11:28] Epoch 10: Loss(train): 0.036034 Loss(val): 0.035340
  839. [03:38:58] Epoch 12: Loss(train): 0.035133 Loss(val): 0.036576
  840. [04:06:04] Epoch 14: Loss(train): 0.031527 Loss(val): 0.032155
  841. [04:33:18] Epoch 16: Loss(train): 0.032142 Loss(val): 0.033449
  842. [04:56:07] Epoch 18: Loss(train): 0.029012 Loss(val): 0.028829
  843. [05:20:51] Epoch 20: Loss(train): 0.027290 Loss(val): 0.027411
  844. [05:43:24] Epoch 22: Loss(train): 0.026393 Loss(val): 0.025477
  845. [06:09:01] Epoch 24: Loss(train): 0.025136 Loss(val): 0.024777
  846. [06:34:51] Epoch 26: Loss(train): 0.023614 Loss(val): 0.022565
  847. [07:00:12] Epoch 28: Loss(train): 0.023541 Loss(val): 0.023284
  848. [07:24:35] Epoch 30: Loss(train): 0.023083 Loss(val): 0.022527
  849. [07:48:19] Epoch 32: Loss(train): 0.022078 Loss(val): 0.021276
  850. [08:12:51] Epoch 34: Loss(train): 0.021870 Loss(val): 0.021672
  851. [08:36:53] Epoch 36: Loss(train): 0.021393 Loss(val): 0.021033
  852. [09:00:56] Epoch 38: Loss(train): 0.021274 Loss(val): 0.020903
  853. [09:27:55] Epoch 40: Loss(train): 0.022459 Loss(val): 0.021333
  854. [09:31:11] FINAL(40) Loss(val): 0.021333 Accuarcy: 0.573265
  855. Search 38 of 500
  856. momentum0.92, features=[96, 192, 192], dropout_rate=0.8
  857. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
  858. [09:40:13] INIT Loss(val): 0.177381 Accuarcy: 0.082194
  859. [10:02:06] Epoch 2: Loss(train): 0.100145 Loss(val): 0.101442
  860. [10:28:32] Epoch 4: Loss(train): 0.090080 Loss(val): 0.090478
  861. [10:54:33] Epoch 6: Loss(train): 0.086961 Loss(val): 0.087106
  862. [11:18:52] Epoch 8: Loss(train): 0.085055 Loss(val): 0.085218
  863. [11:42:03] Epoch 10: Loss(train): 0.084008 Loss(val): 0.084082
  864. [12:08:51] Epoch 12: Loss(train): 0.083061 Loss(val): 0.083309
  865. [12:34:18] Epoch 14: Loss(train): 0.082237 Loss(val): 0.082573
  866. [12:54:57] Epoch 16: Loss(train): 0.082143 Loss(val): 0.082355
  867. [13:18:12] Epoch 18: Loss(train): 0.081369 Loss(val): 0.081832
  868. [13:40:38] Epoch 20: Loss(train): 0.081240 Loss(val): 0.081622
  869. [14:05:08] Epoch 22: Loss(train): 0.080846 Loss(val): 0.081271
  870. [14:28:44] Epoch 24: Loss(train): 0.080775 Loss(val): 0.081209
  871. Early stopping with Loss(train) 0.087498 at epoch 24 (Accuracy: 0.458163)
  872. Search 39 of 500
  873. momentum0.94, features=[64, 64, 64], dropout_rate=0.1
  874. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
  875. [14:32:44] INIT Loss(val): 0.131732 Accuarcy: 0.093946
  876. [14:43:04] Epoch 2: Loss(train): 0.081255 Loss(val): 0.079859
  877. [14:57:19] Epoch 4: Loss(train): 0.068332 Loss(val): 0.067841
  878. [15:09:13] Epoch 6: Loss(train): 0.064528 Loss(val): 0.064704
  879. [15:21:16] Epoch 8: Loss(train): 0.062921 Loss(val): 0.063261
  880. [15:34:46] Epoch 10: Loss(train): 0.062030 Loss(val): 0.062498
  881. [15:45:50] Epoch 12: Loss(train): 0.061265 Loss(val): 0.061891
  882. [16:00:28] Epoch 14: Loss(train): 0.060731 Loss(val): 0.061435
  883. [16:12:25] Epoch 16: Loss(train): 0.060351 Loss(val): 0.061083
  884. [16:24:49] Epoch 18: Loss(train): 0.060006 Loss(val): 0.060862
  885. [16:37:32] Epoch 20: Loss(train): 0.059765 Loss(val): 0.060644
  886. [16:48:56] Epoch 22: Loss(train): 0.059551 Loss(val): 0.060483
  887. [17:01:56] Epoch 24: Loss(train): 0.059328 Loss(val): 0.060275
  888. [17:14:41] Epoch 26: Loss(train): 0.059153 Loss(val): 0.060095
  889. [17:26:03] Epoch 28: Loss(train): 0.058965 Loss(val): 0.059951
  890. [17:40:07] Epoch 30: Loss(train): 0.058867 Loss(val): 0.059819
  891. [17:52:28] Epoch 32: Loss(train): 0.058637 Loss(val): 0.059653
  892. [18:05:08] Epoch 34: Loss(train): 0.058543 Loss(val): 0.059542
  893. [18:19:54] Epoch 36: Loss(train): 0.058402 Loss(val): 0.059439
  894. [18:30:58] Epoch 38: Loss(train): 0.058293 Loss(val): 0.059341
  895. Early stopping with Loss(train) 0.059225 at epoch 38 (Accuracy: 0.544405)
  896. Search 40 of 500
  897. momentum0.92, features=[32, 32, 32], dropout_rate=0.1
  898. kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
  899. [18:34:47] INIT Loss(val): 0.124025 Accuarcy: 0.088776
  900. [18:47:33] Epoch 2: Loss(train): 0.057543 Loss(val): 0.058215
  901. [18:57:06] Epoch 4: Loss(train): 0.051879 Loss(val): 0.052554
  902. [19:05:25] Epoch 6: Loss(train): 0.048303 Loss(val): 0.048884
  903. [19:19:12] Epoch 8: Loss(train): 0.047418 Loss(val): 0.046097
  904. [19:28:58] Epoch 10: Loss(train): 0.046238 Loss(val): 0.044915
  905. [19:37:28] Epoch 12: Loss(train): 0.044154 Loss(val): 0.043053
  906. [19:51:17] Epoch 14: Loss(train): 0.042655 Loss(val): 0.041790
  907. [20:01:13] Epoch 16: Loss(train): 0.041199 Loss(val): 0.040503
  908. [20:09:50] Epoch 18: Loss(train): 0.040215 Loss(val): 0.039571
  909. [20:23:19] Epoch 20: Loss(train): 0.039205 Loss(val): 0.038591
  910. [20:33:47] Epoch 22: Loss(train): 0.038505 Loss(val): 0.037907
  911. [20:42:15] Epoch 24: Loss(train): 0.037870 Loss(val): 0.037287
  912. [20:50:49] Epoch 26: Loss(train): 0.037377 Loss(val): 0.036808
  913. [20:59:19] Epoch 28: Loss(train): 0.036958 Loss(val): 0.036429
  914. [21:08:32] Epoch 30: Loss(train): 0.036559 Loss(val): 0.036016
  915. [21:21:13] Epoch 32: Loss(train): 0.036171 Loss(val): 0.035656
  916. [21:30:26] Epoch 34: Loss(train): 0.035821 Loss(val): 0.035373
  917. [21:39:16] Epoch 36: Loss(train): 0.035724 Loss(val): 0.035267
  918. [21:51:46] Epoch 38: Loss(train): 0.035684 Loss(val): 0.035258
  919. [22:01:20] Epoch 40: Loss(train): 0.035597 Loss(val): 0.035128
  920. [22:02:18] FINAL(40) Loss(val): 0.035128 Accuarcy: 0.636701
  921. Search 41 of 500
  922. momentum0.98, features=[64, 64, 64], dropout_rate=0.1
  923. kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
  924. [22:03:51] INIT Loss(val): 0.116976 Accuarcy: 0.093078
  925. [22:29:47] Epoch 2: Loss(train): 0.064875 Loss(val): 0.063949
  926. [22:57:17] Epoch 4: Loss(train): 0.059843 Loss(val): 0.058989
  927. [23:24:07] Epoch 6: Loss(train): 0.057889 Loss(val): 0.057287
  928. [23:50:54] Epoch 8: Loss(train): 0.056778 Loss(val): 0.056329
  929. [00:17:41] Epoch 10: Loss(train): 0.056209 Loss(val): 0.055885
  930. [00:43:47] Epoch 12: Loss(train): 0.055611 Loss(val): 0.055446
  931. [01:11:43] Epoch 14: Loss(train): 0.055447 Loss(val): 0.055392
  932. [01:40:33] Epoch 16: Loss(train): 0.055111 Loss(val): 0.055106
  933. [02:09:24] Epoch 18: Loss(train): 0.054887 Loss(val): 0.054910
  934. [02:39:30] Epoch 20: Loss(train): 0.054918 Loss(val): 0.054874
  935. [03:09:24] Epoch 22: Loss(train): 0.054555 Loss(val): 0.054594
  936. [03:38:37] Epoch 24: Loss(train): 0.054447 Loss(val): 0.054464
  937. [04:07:54] Epoch 26: Loss(train): 0.054165 Loss(val): 0.054282
  938. [04:34:20] Epoch 28: Loss(train): 0.053983 Loss(val): 0.054111
  939. [05:01:39] Epoch 30: Loss(train): 0.053737 Loss(val): 0.053914
  940. [05:27:48] Epoch 32: Loss(train): 0.053491 Loss(val): 0.053724
  941. [05:55:10] Epoch 34: Loss(train): 0.053195 Loss(val): 0.053495
  942. [06:23:22] Epoch 36: Loss(train): 0.052964 Loss(val): 0.053314
  943. [06:51:28] Epoch 38: Loss(train): 0.052682 Loss(val): 0.053067
  944. [07:19:10] Epoch 40: Loss(train): 0.052387 Loss(val): 0.052851
  945. [07:23:01] FINAL(40) Loss(val): 0.052851 Accuarcy: 0.607602
  946. Search 42 of 500
  947. momentum0.96, features=[32, 64, 128], dropout_rate=0.1
  948. kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
  949. [07:29:16] INIT Loss(val): 0.176981 Accuarcy: 0.089626
  950. [08:08:38] Epoch 2: Loss(train): 0.084734 Loss(val): 0.084191
  951. [08:51:50] Epoch 4: Loss(train): 0.074645 Loss(val): 0.074708
  952. [09:34:55] Epoch 6: Loss(train): 0.071603 Loss(val): 0.072190
  953. [10:19:23] Epoch 8: Loss(train): 0.070126 Loss(val): 0.070948
  954. [11:06:15] Epoch 10: Loss(train): 0.069323 Loss(val): 0.070290