1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039 |
- --------[20_09_2019 13:25:28]--------
- Random Grid Search
- Search 1 of 500
- momentum0.96, features=[96, 192, 192], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.03
- [13:26:39] INIT Loss(val): 0.141007 Accuarcy: 0.117381
- [13:29:14] Epoch 2: Loss(train): 0.088968 Loss(val): 0.087040
- [13:30:22] Epoch 4: Loss(train): 0.078608 Loss(val): 0.076951
- [13:31:29] Epoch 6: Loss(train): 0.076482 Loss(val): 0.074798
- [13:32:37] Epoch 8: Loss(train): 0.074540 Loss(val): 0.072936
- [13:33:44] Epoch 10: Loss(train): 0.073011 Loss(val): 0.071681
- [13:34:52] Epoch 12: Loss(train): 0.071422 Loss(val): 0.070381
- [13:36:01] Epoch 14: Loss(train): 0.070299 Loss(val): 0.069362
- [13:37:10] Epoch 16: Loss(train): 0.069983 Loss(val): 0.069102
- [13:38:18] Epoch 18: Loss(train): 0.069733 Loss(val): 0.068830
- [13:39:27] Epoch 20: Loss(train): 0.068419 Loss(val): 0.067956
- [13:40:35] Epoch 22: Loss(train): 0.068390 Loss(val): 0.067870
- [13:41:44] Epoch 24: Loss(train): 0.068358 Loss(val): 0.067915
- [13:42:53] Epoch 26: Loss(train): 0.068200 Loss(val): 0.067803
- [13:44:01] Epoch 28: Loss(train): 0.067958 Loss(val): 0.067655
- [13:45:10] Epoch 30: Loss(train): 0.067752 Loss(val): 0.067437
- [13:46:18] Epoch 32: Loss(train): 0.067372 Loss(val): 0.067225
- [13:47:28] Epoch 34: Loss(train): 0.067107 Loss(val): 0.067024
- [13:48:38] Epoch 36: Loss(train): 0.066756 Loss(val): 0.066762
- [13:49:50] Epoch 38: Loss(train): 0.066352 Loss(val): 0.066501
- [13:50:59] Epoch 40: Loss(train): 0.066226 Loss(val): 0.066400
- [13:51:06] FINAL(40) Loss(val): 0.066400 Accuarcy: 0.621310
- Search 2 of 500
- momentum0.99, features=[32, 32, 32], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
- [13:51:25] INIT Loss(val): 0.116734 Accuarcy: 0.086190
- [13:52:24] Epoch 2: Loss(train): 0.111209 Loss(val): 0.112811
- [13:52:52] Epoch 4: Loss(train): 0.070398 Loss(val): 0.072423
- [13:53:22] Epoch 6: Loss(train): 0.068424 Loss(val): 0.070707
- [13:53:52] Epoch 8: Loss(train): 0.067158 Loss(val): 0.069694
- [13:54:21] Epoch 10: Loss(train): 0.066686 Loss(val): 0.069351
- [13:54:50] Epoch 12: Loss(train): 0.066295 Loss(val): 0.069087
- [13:55:20] Epoch 14: Loss(train): 0.066166 Loss(val): 0.069011
- [13:55:49] Epoch 16: Loss(train): 0.066101 Loss(val): 0.068977
- [13:56:18] Epoch 18: Loss(train): 0.066013 Loss(val): 0.068943
- [13:56:46] Epoch 20: Loss(train): 0.065961 Loss(val): 0.068933
- [13:57:14] Epoch 22: Loss(train): 0.065942 Loss(val): 0.068932
- Early stopping with Loss(train) 0.065942 at epoch 22 (Accuracy: 0.091786)
- Search 3 of 500
- momentum0.98, features=[32, 64, 128], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.3
- [13:57:28] INIT Loss(val): 0.158934 Accuarcy: 0.094031
- [13:59:04] Epoch 2: Loss(train): 0.079493 Loss(val): 0.079803
- [14:00:10] Epoch 4: Loss(train): 0.071139 Loss(val): 0.070190
- [14:01:15] Epoch 6: Loss(train): 0.057562 Loss(val): 0.059708
- [14:02:20] Epoch 8: Loss(train): 0.042016 Loss(val): 0.042341
- [14:03:25] Epoch 10: Loss(train): 0.035010 Loss(val): 0.034012
- [14:04:32] Epoch 12: Loss(train): 0.031262 Loss(val): 0.030622
- [14:05:40] Epoch 14: Loss(train): 0.031100 Loss(val): 0.031548
- [14:06:43] Epoch 16: Loss(train): 0.027940 Loss(val): 0.026886
- [14:07:49] Epoch 18: Loss(train): 0.026650 Loss(val): 0.026341
- [14:08:55] Epoch 20: Loss(train): 0.025911 Loss(val): 0.024959
- [14:09:59] Epoch 22: Loss(train): 0.023871 Loss(val): 0.022819
- [14:11:04] Epoch 24: Loss(train): 0.022636 Loss(val): 0.021778
- [14:12:08] Epoch 26: Loss(train): 0.020553 Loss(val): 0.020178
- [14:13:13] Epoch 28: Loss(train): 0.020170 Loss(val): 0.019662
- [14:14:21] Epoch 30: Loss(train): 0.020618 Loss(val): 0.019873
- [14:15:29] Epoch 32: Loss(train): 0.021250 Loss(val): 0.020526
- [14:16:36] Epoch 34: Loss(train): 0.020209 Loss(val): 0.019461
- [14:17:50] Epoch 36: Loss(train): 0.019272 Loss(val): 0.018871
- [14:19:04] Epoch 38: Loss(train): 0.019579 Loss(val): 0.019146
- [14:20:18] Epoch 40: Loss(train): 0.020248 Loss(val): 0.019587
- [14:20:28] FINAL(40) Loss(val): 0.019587 Accuarcy: 0.607517
- Search 4 of 500
- momentum0.98, features=[32, 32, 32], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
- [14:20:51] INIT Loss(val): 0.128640 Accuarcy: 0.094643
- [14:21:39] Epoch 2: Loss(train): 0.056761 Loss(val): 0.056647
- [14:22:08] Epoch 4: Loss(train): 0.050836 Loss(val): 0.050852
- [14:22:37] Epoch 6: Loss(train): 0.048547 Loss(val): 0.048590
- [14:23:06] Epoch 8: Loss(train): 0.047363 Loss(val): 0.047409
- [14:23:35] Epoch 10: Loss(train): 0.046506 Loss(val): 0.046528
- [14:24:05] Epoch 12: Loss(train): 0.046048 Loss(val): 0.046113
- [14:24:34] Epoch 14: Loss(train): 0.045531 Loss(val): 0.045707
- [14:25:05] Epoch 16: Loss(train): 0.045208 Loss(val): 0.045390
- [14:25:35] Epoch 18: Loss(train): 0.044927 Loss(val): 0.045131
- [14:26:06] Epoch 20: Loss(train): 0.044599 Loss(val): 0.044836
- [14:26:36] Epoch 22: Loss(train): 0.044361 Loss(val): 0.044653
- [14:27:05] Epoch 24: Loss(train): 0.044173 Loss(val): 0.044473
- [14:27:36] Epoch 26: Loss(train): 0.043907 Loss(val): 0.044196
- [14:28:06] Epoch 28: Loss(train): 0.043688 Loss(val): 0.044030
- [14:28:36] Epoch 30: Loss(train): 0.043458 Loss(val): 0.043854
- [14:29:07] Epoch 32: Loss(train): 0.043282 Loss(val): 0.043654
- [14:29:37] Epoch 34: Loss(train): 0.043138 Loss(val): 0.043506
- [14:30:07] Epoch 36: Loss(train): 0.042960 Loss(val): 0.043359
- [14:30:38] Epoch 38: Loss(train): 0.042856 Loss(val): 0.043255
- Early stopping with Loss(train) 0.044059 at epoch 38 (Accuracy: 0.575901)
- Search 5 of 500
- momentum0.94, features=[64, 64, 64], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
- [14:30:53] INIT Loss(val): 0.119816 Accuarcy: 0.091463
- [14:34:37] Epoch 2: Loss(train): 0.068172 Loss(val): 0.066521
- [14:38:47] Epoch 4: Loss(train): 0.061371 Loss(val): 0.060421
- [14:44:35] Epoch 6: Loss(train): 0.058998 Loss(val): 0.058359
- [14:50:21] Epoch 8: Loss(train): 0.057713 Loss(val): 0.057312
- [14:54:55] Epoch 10: Loss(train): 0.056964 Loss(val): 0.056694
- [14:59:13] Epoch 12: Loss(train): 0.056202 Loss(val): 0.056133
- [15:03:30] Epoch 14: Loss(train): 0.055774 Loss(val): 0.055825
- [15:07:46] Epoch 16: Loss(train): 0.055417 Loss(val): 0.055541
- [15:09:41] Epoch 18: Loss(train): 0.055157 Loss(val): 0.055343
- [15:11:36] Epoch 20: Loss(train): 0.054948 Loss(val): 0.055184
- [15:14:40] Epoch 22: Loss(train): 0.054736 Loss(val): 0.055040
- [15:17:10] Epoch 24: Loss(train): 0.054518 Loss(val): 0.054851
- [15:19:29] Epoch 26: Loss(train): 0.054388 Loss(val): 0.054757
- [15:21:38] Epoch 28: Loss(train): 0.054141 Loss(val): 0.054547
- [15:23:56] Epoch 30: Loss(train): 0.054011 Loss(val): 0.054442
- [15:25:57] Epoch 32: Loss(train): 0.053802 Loss(val): 0.054259
- [15:27:59] Epoch 34: Loss(train): 0.053625 Loss(val): 0.054112
- [15:30:03] Epoch 36: Loss(train): 0.053405 Loss(val): 0.053942
- [15:32:05] Epoch 38: Loss(train): 0.053237 Loss(val): 0.053814
- Early stopping with Loss(train) 0.054171 at epoch 38 (Accuracy: 0.534439)
- Search 6 of 500
- momentum0.94, features=[96, 192, 192], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.1
- [15:32:54] INIT Loss(val): 0.138280 Accuarcy: 0.103418
- [15:34:06] Epoch 2: Loss(train): 0.083781 Loss(val): 0.084471
- [15:35:16] Epoch 4: Loss(train): 0.076121 Loss(val): 0.077370
- [15:36:23] Epoch 6: Loss(train): 0.074109 Loss(val): 0.073338
- [15:37:30] Epoch 8: Loss(train): 0.070528 Loss(val): 0.070370
- [15:38:36] Epoch 10: Loss(train): 0.067579 Loss(val): 0.067635
- [15:39:43] Epoch 12: Loss(train): 0.065495 Loss(val): 0.065627
- [15:40:51] Epoch 14: Loss(train): 0.064575 Loss(val): 0.064573
- [15:42:01] Epoch 16: Loss(train): 0.062974 Loss(val): 0.063009
- [15:43:23] Epoch 18: Loss(train): 0.061456 Loss(val): 0.061671
- [15:44:49] Epoch 20: Loss(train): 0.060464 Loss(val): 0.060732
- [15:46:07] Epoch 22: Loss(train): 0.059721 Loss(val): 0.060011
- [15:47:29] Epoch 24: Loss(train): 0.058930 Loss(val): 0.059211
- [15:48:42] Epoch 26: Loss(train): 0.058132 Loss(val): 0.058528
- [15:50:06] Epoch 28: Loss(train): 0.057695 Loss(val): 0.058175
- [15:51:18] Epoch 30: Loss(train): 0.056704 Loss(val): 0.057436
- [15:52:28] Epoch 32: Loss(train): 0.056475 Loss(val): 0.057144
- [15:53:48] Epoch 34: Loss(train): 0.055826 Loss(val): 0.056582
- Early stopping with Loss(train) 0.056777 at epoch 35 (Accuracy: 0.632602)
- Search 7 of 500
- momentum0.9, features=[32, 64, 128], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
- [15:54:46] INIT Loss(val): 0.146946 Accuarcy: 0.092534
- [15:59:34] Epoch 2: Loss(train): 0.080755 Loss(val): 0.080996
- [16:04:53] Epoch 4: Loss(train): 0.072572 Loss(val): 0.072945
- [16:10:04] Epoch 6: Loss(train): 0.069757 Loss(val): 0.070359
- [16:16:05] Epoch 8: Loss(train): 0.068311 Loss(val): 0.069053
- [16:18:27] Epoch 10: Loss(train): 0.067540 Loss(val): 0.068310
- [16:20:27] Epoch 12: Loss(train): 0.066874 Loss(val): 0.067751
- [16:21:51] Epoch 14: Loss(train): 0.066258 Loss(val): 0.067226
- [16:23:24] Epoch 16: Loss(train): 0.065859 Loss(val): 0.066875
- [16:24:42] Epoch 18: Loss(train): 0.065511 Loss(val): 0.066519
- [16:26:03] Epoch 20: Loss(train): 0.065213 Loss(val): 0.066262
- [16:27:34] Epoch 22: Loss(train): 0.064957 Loss(val): 0.066055
- [16:28:56] Epoch 24: Loss(train): 0.064687 Loss(val): 0.065852
- [16:30:15] Epoch 26: Loss(train): 0.064495 Loss(val): 0.065710
- [16:31:42] Epoch 28: Loss(train): 0.064351 Loss(val): 0.065567
- [16:33:03] Epoch 30: Loss(train): 0.064181 Loss(val): 0.065445
- Early stopping with Loss(train) 0.067298 at epoch 31 (Accuracy: 0.446395)
- Search 8 of 500
- momentum0.96, features=[32, 32, 32], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
- [16:34:07] INIT Loss(val): 0.114290 Accuarcy: 0.088316
- [16:34:46] Epoch 2: Loss(train): 0.064952 Loss(val): 0.064766
- [16:35:23] Epoch 4: Loss(train): 0.055647 Loss(val): 0.055572
- [16:36:02] Epoch 6: Loss(train): 0.052844 Loss(val): 0.052606
- [16:36:38] Epoch 8: Loss(train): 0.050985 Loss(val): 0.050845
- [16:37:12] Epoch 10: Loss(train): 0.049845 Loss(val): 0.049633
- [16:37:47] Epoch 12: Loss(train): 0.049152 Loss(val): 0.048910
- [16:38:22] Epoch 14: Loss(train): 0.048669 Loss(val): 0.048351
- [16:38:57] Epoch 16: Loss(train): 0.048184 Loss(val): 0.047886
- [16:39:31] Epoch 18: Loss(train): 0.047724 Loss(val): 0.047523
- [16:40:06] Epoch 20: Loss(train): 0.047366 Loss(val): 0.047177
- [16:40:42] Epoch 22: Loss(train): 0.047168 Loss(val): 0.046973
- [16:41:17] Epoch 24: Loss(train): 0.046858 Loss(val): 0.046676
- [16:41:52] Epoch 26: Loss(train): 0.046654 Loss(val): 0.046519
- [16:42:27] Epoch 28: Loss(train): 0.046444 Loss(val): 0.046329
- [16:43:03] Epoch 30: Loss(train): 0.046292 Loss(val): 0.046197
- [16:43:39] Epoch 32: Loss(train): 0.046148 Loss(val): 0.046083
- [16:44:14] Epoch 34: Loss(train): 0.045966 Loss(val): 0.045960
- [16:44:50] Epoch 36: Loss(train): 0.045872 Loss(val): 0.045834
- [16:45:40] Epoch 38: Loss(train): 0.045775 Loss(val): 0.045743
- Early stopping with Loss(train) 0.048965 at epoch 38 (Accuracy: 0.502738)
- Search 9 of 500
- momentum0.9, features=[32, 64, 128], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.3
- [16:46:09] INIT Loss(val): 0.128704 Accuarcy: 0.095255
- [16:47:37] Epoch 2: Loss(train): 0.068261 Loss(val): 0.066425
- [16:48:59] Epoch 4: Loss(train): 0.059768 Loss(val): 0.058380
- [16:49:56] Epoch 6: Loss(train): 0.056013 Loss(val): 0.054921
- [16:50:56] Epoch 8: Loss(train): 0.052184 Loss(val): 0.051936
- [16:52:12] Epoch 10: Loss(train): 0.050930 Loss(val): 0.050823
- [16:53:14] Epoch 12: Loss(train): 0.050832 Loss(val): 0.051081
- [16:54:05] Epoch 14: Loss(train): 0.047966 Loss(val): 0.048353
- [16:54:58] Epoch 16: Loss(train): 0.046510 Loss(val): 0.046471
- [16:55:53] Epoch 18: Loss(train): 0.045391 Loss(val): 0.045162
- Early stopping with Loss(train) 0.047088 at epoch 19 (Accuracy: 0.514779)
- Search 10 of 500
- momentum0.99, features=[32, 32, 32], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
- [16:56:41] INIT Loss(val): 0.155156 Accuarcy: 0.107092
- [16:57:23] Epoch 2: Loss(train): 0.082692 Loss(val): 0.082872
- [16:58:03] Epoch 4: Loss(train): 0.070038 Loss(val): 0.068951
- [16:58:43] Epoch 6: Loss(train): 0.052024 Loss(val): 0.051050
- [16:59:23] Epoch 8: Loss(train): 0.042558 Loss(val): 0.042033
- [17:00:01] Epoch 10: Loss(train): 0.033804 Loss(val): 0.032005
- [17:00:41] Epoch 12: Loss(train): 0.028679 Loss(val): 0.028131
- [17:01:25] Epoch 14: Loss(train): 0.026270 Loss(val): 0.025863
- [17:02:07] Epoch 16: Loss(train): 0.025516 Loss(val): 0.024859
- [17:02:46] Epoch 18: Loss(train): 0.024369 Loss(val): 0.024071
- [17:03:26] Epoch 20: Loss(train): 0.022684 Loss(val): 0.022117
- [17:04:06] Epoch 22: Loss(train): 0.022049 Loss(val): 0.020969
- [17:04:45] Epoch 24: Loss(train): 0.021334 Loss(val): 0.020421
- [17:05:26] Epoch 26: Loss(train): 0.021068 Loss(val): 0.020358
- [17:06:06] Epoch 28: Loss(train): 0.021064 Loss(val): 0.020323
- [17:06:45] Epoch 30: Loss(train): 0.021924 Loss(val): 0.020800
- [17:07:25] Epoch 32: Loss(train): 0.022128 Loss(val): 0.021133
- [17:08:05] Epoch 34: Loss(train): 0.021443 Loss(val): 0.020385
- [17:08:44] Epoch 36: Loss(train): 0.023132 Loss(val): 0.021738
- [17:09:23] Epoch 38: Loss(train): 0.024656 Loss(val): 0.023247
- [17:10:02] Epoch 40: Loss(train): 0.022748 Loss(val): 0.021955
- [17:10:07] FINAL(40) Loss(val): 0.021955 Accuarcy: 0.579932
- Search 11 of 500
- momentum0.99, features=[32, 64, 128], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
- [17:10:22] INIT Loss(val): 0.131512 Accuarcy: 0.094524
- [17:11:17] Epoch 2: Loss(train): 0.067090 Loss(val): 0.065792
- [17:12:12] Epoch 4: Loss(train): 0.061073 Loss(val): 0.059899
- [17:13:05] Epoch 6: Loss(train): 0.059854 Loss(val): 0.059079
- [17:14:02] Epoch 8: Loss(train): 0.059035 Loss(val): 0.058605
- [17:14:57] Epoch 10: Loss(train): 0.058039 Loss(val): 0.057734
- [17:15:54] Epoch 12: Loss(train): 0.056114 Loss(val): 0.055818
- [17:17:03] Epoch 14: Loss(train): 0.055465 Loss(val): 0.055276
- [17:18:32] Epoch 16: Loss(train): 0.055368 Loss(val): 0.055433
- [17:19:59] Epoch 18: Loss(train): 0.055454 Loss(val): 0.055520
- [17:21:32] Epoch 20: Loss(train): 0.055490 Loss(val): 0.055287
- [17:22:53] Epoch 22: Loss(train): 0.054614 Loss(val): 0.054396
- [17:23:49] Epoch 24: Loss(train): 0.053453 Loss(val): 0.053415
- [17:25:15] Epoch 26: Loss(train): 0.053183 Loss(val): 0.053106
- [17:26:20] Epoch 28: Loss(train): 0.053469 Loss(val): 0.053248
- [17:27:23] Epoch 30: Loss(train): 0.054454 Loss(val): 0.053836
- [17:28:23] Epoch 32: Loss(train): 0.054597 Loss(val): 0.053841
- [17:29:24] Epoch 34: Loss(train): 0.053575 Loss(val): 0.053139
- [17:30:23] Epoch 36: Loss(train): 0.052531 Loss(val): 0.052516
- [17:31:27] Epoch 38: Loss(train): 0.052137 Loss(val): 0.052324
- [17:32:28] Epoch 40: Loss(train): 0.051984 Loss(val): 0.052194
- [17:32:35] FINAL(40) Loss(val): 0.052194 Accuarcy: 0.657959
- Search 12 of 500
- momentum0.98, features=[64, 64, 64], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
- [17:32:56] INIT Loss(val): 0.152510 Accuarcy: 0.094932
- [17:34:22] Epoch 2: Loss(train): 0.076679 Loss(val): 0.078237
- [17:35:44] Epoch 4: Loss(train): 0.059022 Loss(val): 0.060126
- [17:40:56] Epoch 6: Loss(train): 0.050557 Loss(val): 0.051844
- [17:49:29] Epoch 8: Loss(train): 0.045205 Loss(val): 0.045557
- [18:00:08] Epoch 10: Loss(train): 0.040994 Loss(val): 0.041337
- [18:08:11] Epoch 12: Loss(train): 0.038653 Loss(val): 0.038964
- [18:15:40] Epoch 14: Loss(train): 0.036438 Loss(val): 0.036957
- [18:25:46] Epoch 16: Loss(train): 0.035700 Loss(val): 0.035639
- [18:35:47] Epoch 18: Loss(train): 0.034637 Loss(val): 0.034805
- [18:43:48] Epoch 20: Loss(train): 0.031340 Loss(val): 0.031079
- [18:51:14] Epoch 22: Loss(train): 0.029792 Loss(val): 0.029546
- [19:02:50] Epoch 24: Loss(train): 0.028174 Loss(val): 0.027946
- [19:11:45] Epoch 26: Loss(train): 0.027586 Loss(val): 0.027259
- [19:19:33] Epoch 28: Loss(train): 0.027456 Loss(val): 0.027579
- [19:28:45] Epoch 30: Loss(train): 0.027956 Loss(val): 0.027891
- [19:40:09] Epoch 32: Loss(train): 0.028770 Loss(val): 0.028286
- Early stopping with Loss(train) 0.028975 at epoch 33 (Accuracy: 0.584439)
- Search 13 of 500
- momentum0.99, features=[64, 64, 64], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
- [19:46:57] INIT Loss(val): 0.145452 Accuarcy: 0.113588
- [19:50:44] Epoch 2: Loss(train): 0.089347 Loss(val): 0.088077
- [19:54:42] Epoch 4: Loss(train): 0.063581 Loss(val): 0.064125
- [19:59:21] Epoch 6: Loss(train): 0.061616 Loss(val): 0.062470
- [20:06:13] Epoch 8: Loss(train): 0.061005 Loss(val): 0.061986
- [20:11:36] Epoch 10: Loss(train): 0.060453 Loss(val): 0.061392
- [20:16:11] Epoch 12: Loss(train): 0.059992 Loss(val): 0.060942
- [20:20:27] Epoch 14: Loss(train): 0.059627 Loss(val): 0.060763
- [20:24:29] Epoch 16: Loss(train): 0.059573 Loss(val): 0.060785
- [20:28:31] Epoch 18: Loss(train): 0.059532 Loss(val): 0.060666
- [20:34:27] Epoch 20: Loss(train): 0.058798 Loss(val): 0.059861
- [20:41:03] Epoch 22: Loss(train): 0.058062 Loss(val): 0.059021
- [20:46:14] Epoch 24: Loss(train): 0.057693 Loss(val): 0.058506
- [20:50:45] Epoch 26: Loss(train): 0.057584 Loss(val): 0.058362
- [20:54:59] Epoch 28: Loss(train): 0.057410 Loss(val): 0.058215
- [20:59:00] Epoch 30: Loss(train): 0.057174 Loss(val): 0.057987
- [21:03:40] Epoch 32: Loss(train): 0.057070 Loss(val): 0.057808
- [21:10:36] Epoch 34: Loss(train): 0.057235 Loss(val): 0.057774
- [21:16:08] Epoch 36: Loss(train): 0.057474 Loss(val): 0.057816
- [21:21:06] Epoch 38: Loss(train): 0.057530 Loss(val): 0.057807
- [21:25:37] Epoch 40: Loss(train): 0.057105 Loss(val): 0.057592
- [21:26:04] FINAL(40) Loss(val): 0.057592 Accuarcy: 0.591735
- Search 14 of 500
- momentum0.9, features=[32, 32, 32], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(7, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.01
- [21:26:59] INIT Loss(val): 0.122847 Accuarcy: 0.101803
- [21:29:56] Epoch 2: Loss(train): 0.064045 Loss(val): 0.063516
- [21:33:02] Epoch 4: Loss(train): 0.056780 Loss(val): 0.055908
- [21:36:53] Epoch 6: Loss(train): 0.054376 Loss(val): 0.053519
- [21:42:25] Epoch 8: Loss(train): 0.052633 Loss(val): 0.051863
- [21:47:10] Epoch 10: Loss(train): 0.051527 Loss(val): 0.050836
- [21:51:13] Epoch 12: Loss(train): 0.050602 Loss(val): 0.049957
- [21:54:56] Epoch 14: Loss(train): 0.050027 Loss(val): 0.049464
- [21:58:20] Epoch 16: Loss(train): 0.049429 Loss(val): 0.048945
- [22:01:33] Epoch 18: Loss(train): 0.048902 Loss(val): 0.048480
- [22:04:43] Epoch 20: Loss(train): 0.048485 Loss(val): 0.048132
- [22:07:56] Epoch 22: Loss(train): 0.048165 Loss(val): 0.047822
- [22:11:08] Epoch 24: Loss(train): 0.047914 Loss(val): 0.047628
- [22:14:30] Epoch 26: Loss(train): 0.047709 Loss(val): 0.047426
- [22:17:49] Epoch 28: Loss(train): 0.047584 Loss(val): 0.047305
- [22:21:12] Epoch 30: Loss(train): 0.047354 Loss(val): 0.047143
- Early stopping with Loss(train) 0.050260 at epoch 31 (Accuracy: 0.503571)
- Search 15 of 500
- momentum0.98, features=[32, 64, 128], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
- [22:23:39] INIT Loss(val): 0.218097 Accuarcy: 0.093946
- [22:31:36] Epoch 2: Loss(train): 0.072229 Loss(val): 0.072008
- [22:42:38] Epoch 4: Loss(train): 0.066523 Loss(val): 0.066956
- [22:51:18] Epoch 6: Loss(train): 0.064689 Loss(val): 0.065551
- [22:59:03] Epoch 8: Loss(train): 0.063820 Loss(val): 0.064851
- [23:08:26] Epoch 10: Loss(train): 0.063226 Loss(val): 0.064352
- [23:17:54] Epoch 12: Loss(train): 0.062768 Loss(val): 0.063999
- [23:26:17] Epoch 14: Loss(train): 0.062558 Loss(val): 0.063801
- [23:34:03] Epoch 16: Loss(train): 0.062267 Loss(val): 0.063589
- [23:44:32] Epoch 18: Loss(train): 0.061969 Loss(val): 0.063301
- [23:53:31] Epoch 20: Loss(train): 0.061649 Loss(val): 0.062996
- [00:01:31] Epoch 22: Loss(train): 0.061327 Loss(val): 0.062696
- [00:11:05] Epoch 24: Loss(train): 0.060975 Loss(val): 0.062371
- [00:20:49] Epoch 26: Loss(train): 0.060806 Loss(val): 0.062130
- [00:29:09] Epoch 28: Loss(train): 0.060544 Loss(val): 0.061854
- [00:37:04] Epoch 30: Loss(train): 0.060328 Loss(val): 0.061611
- [00:48:06] Epoch 32: Loss(train): 0.060126 Loss(val): 0.061430
- [00:57:20] Epoch 34: Loss(train): 0.059966 Loss(val): 0.061301
- [01:05:24] Epoch 36: Loss(train): 0.059804 Loss(val): 0.061190
- [01:16:04] Epoch 38: Loss(train): 0.059661 Loss(val): 0.061111
- [01:25:57] Epoch 40: Loss(train): 0.059557 Loss(val): 0.061046
- [01:27:07] FINAL(40) Loss(val): 0.061046 Accuarcy: 0.573963
- Search 16 of 500
- momentum0.94, features=[64, 64, 64], dropout_rate=0.8
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
- [01:29:00] INIT Loss(val): 0.151834 Accuarcy: 0.108827
- [01:33:32] Epoch 2: Loss(train): 0.110386 Loss(val): 0.113633
- [01:38:13] Epoch 4: Loss(train): 0.106996 Loss(val): 0.110476
- [01:44:49] Epoch 6: Loss(train): 0.100696 Loss(val): 0.104549
- [01:52:04] Epoch 8: Loss(train): 0.094171 Loss(val): 0.098184
- [01:58:26] Epoch 10: Loss(train): 0.089803 Loss(val): 0.093782
- [02:03:44] Epoch 12: Loss(train): 0.087074 Loss(val): 0.091006
- [02:08:33] Epoch 14: Loss(train): 0.085113 Loss(val): 0.088931
- [02:13:20] Epoch 16: Loss(train): 0.083500 Loss(val): 0.087246
- [02:21:19] Epoch 18: Loss(train): 0.081911 Loss(val): 0.085563
- [02:28:13] Epoch 20: Loss(train): 0.080556 Loss(val): 0.084120
- [02:34:03] Epoch 22: Loss(train): 0.079362 Loss(val): 0.082816
- [02:39:08] Epoch 24: Loss(train): 0.078311 Loss(val): 0.081671
- [02:43:58] Epoch 26: Loss(train): 0.077400 Loss(val): 0.080661
- [02:49:40] Epoch 28: Loss(train): 0.076570 Loss(val): 0.079715
- [02:57:52] Epoch 30: Loss(train): 0.075883 Loss(val): 0.078951
- [03:04:07] Epoch 32: Loss(train): 0.075348 Loss(val): 0.078346
- [03:09:39] Epoch 34: Loss(train): 0.074812 Loss(val): 0.077732
- [03:14:37] Epoch 36: Loss(train): 0.074405 Loss(val): 0.077256
- [03:19:32] Epoch 38: Loss(train): 0.074032 Loss(val): 0.076837
- [03:27:14] Epoch 40: Loss(train): 0.073680 Loss(val): 0.076428
- [03:28:09] FINAL(40) Loss(val): 0.076428 Accuarcy: 0.274915
- Search 17 of 500
- momentum0.9, features=[64, 64, 64], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.03
- [03:29:53] INIT Loss(val): 0.131165 Accuarcy: 0.093435
- [03:41:05] Epoch 2: Loss(train): 0.068231 Loss(val): 0.066406
- [03:51:07] Epoch 4: Loss(train): 0.064709 Loss(val): 0.062722
- [04:06:03] Epoch 6: Loss(train): 0.062242 Loss(val): 0.060431
- [04:17:27] Epoch 8: Loss(train): 0.060373 Loss(val): 0.058780
- [04:28:16] Epoch 10: Loss(train): 0.059085 Loss(val): 0.057533
- [04:43:05] Epoch 12: Loss(train): 0.058318 Loss(val): 0.056778
- [04:53:42] Epoch 14: Loss(train): 0.057390 Loss(val): 0.055989
- [05:06:46] Epoch 16: Loss(train): 0.056481 Loss(val): 0.055205
- [05:19:57] Epoch 18: Loss(train): 0.055879 Loss(val): 0.054648
- [05:30:13] Epoch 20: Loss(train): 0.055364 Loss(val): 0.054170
- [05:45:34] Epoch 22: Loss(train): 0.054641 Loss(val): 0.053574
- [05:56:57] Epoch 24: Loss(train): 0.054031 Loss(val): 0.053062
- [06:07:12] Epoch 26: Loss(train): 0.053433 Loss(val): 0.052634
- Early stopping with Loss(train) 0.054989 at epoch 27 (Accuracy: 0.557653)
- Search 18 of 500
- momentum0.92, features=[32, 32, 32], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
- [06:15:45] INIT Loss(val): 0.118689 Accuarcy: 0.101990
- [06:19:38] Epoch 2: Loss(train): 0.068195 Loss(val): 0.069483
- [06:23:52] Epoch 4: Loss(train): 0.062983 Loss(val): 0.063813
- [06:28:34] Epoch 6: Loss(train): 0.060712 Loss(val): 0.061474
- [06:34:45] Epoch 8: Loss(train): 0.059224 Loss(val): 0.060002
- [06:39:41] Epoch 10: Loss(train): 0.058208 Loss(val): 0.059001
- [06:44:28] Epoch 12: Loss(train): 0.057323 Loss(val): 0.058152
- [06:48:47] Epoch 14: Loss(train): 0.056700 Loss(val): 0.057535
- [06:52:56] Epoch 16: Loss(train): 0.056110 Loss(val): 0.056953
- [06:57:00] Epoch 18: Loss(train): 0.055600 Loss(val): 0.056486
- [07:01:11] Epoch 20: Loss(train): 0.055162 Loss(val): 0.056064
- [07:07:25] Epoch 22: Loss(train): 0.054831 Loss(val): 0.055762
- [07:12:41] Epoch 24: Loss(train): 0.054532 Loss(val): 0.055485
- [07:17:21] Epoch 26: Loss(train): 0.054293 Loss(val): 0.055247
- [07:21:44] Epoch 28: Loss(train): 0.054086 Loss(val): 0.055038
- [07:25:57] Epoch 30: Loss(train): 0.053895 Loss(val): 0.054867
- [07:30:12] Epoch 32: Loss(train): 0.053734 Loss(val): 0.054717
- [07:35:30] Epoch 34: Loss(train): 0.053598 Loss(val): 0.054584
- [07:41:27] Epoch 36: Loss(train): 0.053484 Loss(val): 0.054487
- [07:46:25] Epoch 38: Loss(train): 0.053388 Loss(val): 0.054393
- [07:50:59] Epoch 40: Loss(train): 0.053292 Loss(val): 0.054313
- [07:51:26] FINAL(40) Loss(val): 0.054313 Accuarcy: 0.432704
- Search 19 of 500
- momentum0.9, features=[96, 192, 192], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
- [07:52:19] INIT Loss(val): 0.174489 Accuarcy: 0.104456
- [08:05:37] Epoch 2: Loss(train): 0.102096 Loss(val): 0.102915
- [08:21:51] Epoch 4: Loss(train): 0.066749 Loss(val): 0.065971
- [08:35:13] Epoch 6: Loss(train): 0.055856 Loss(val): 0.055964
- [08:52:20] Epoch 8: Loss(train): 0.047794 Loss(val): 0.047813
- [09:05:42] Epoch 10: Loss(train): 0.041983 Loss(val): 0.042211
- [09:23:11] Epoch 12: Loss(train): 0.037630 Loss(val): 0.038138
- [09:36:57] Epoch 14: Loss(train): 0.034115 Loss(val): 0.034479
- [09:55:56] Epoch 16: Loss(train): 0.032334 Loss(val): 0.032522
- [10:09:49] Epoch 18: Loss(train): 0.030284 Loss(val): 0.030510
- [10:29:29] Epoch 20: Loss(train): 0.028992 Loss(val): 0.029348
- [10:43:10] Epoch 22: Loss(train): 0.028101 Loss(val): 0.028161
- [11:02:49] Epoch 24: Loss(train): 0.027532 Loss(val): 0.027852
- Early stopping with Loss(train) 0.028088 at epoch 25 (Accuracy: 0.567806)
- Search 20 of 500
- momentum0.9, features=[96, 192, 192], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
- [11:12:09] INIT Loss(val): 0.158469 Accuarcy: 0.092806
- [11:25:25] Epoch 2: Loss(train): 0.092062 Loss(val): 0.091566
- [11:38:25] Epoch 4: Loss(train): 0.081868 Loss(val): 0.081678
- [11:49:01] Epoch 6: Loss(train): 0.076118 Loss(val): 0.075529
- [12:04:29] Epoch 8: Loss(train): 0.073110 Loss(val): 0.072846
- [12:16:23] Epoch 10: Loss(train): 0.069156 Loss(val): 0.069085
- [12:30:09] Epoch 12: Loss(train): 0.066856 Loss(val): 0.067039
- [12:44:01] Epoch 14: Loss(train): 0.065261 Loss(val): 0.065455
- [12:54:52] Epoch 16: Loss(train): 0.063509 Loss(val): 0.064036
- [13:10:55] Epoch 18: Loss(train): 0.061315 Loss(val): 0.061605
- [13:22:43] Epoch 20: Loss(train): 0.059638 Loss(val): 0.059675
- [13:36:46] Epoch 22: Loss(train): 0.058390 Loss(val): 0.058582
- [13:50:21] Epoch 24: Loss(train): 0.057187 Loss(val): 0.057440
- [14:01:25] Epoch 26: Loss(train): 0.056083 Loss(val): 0.056261
- [14:12:57] Epoch 28: Loss(train): 0.055120 Loss(val): 0.055430
- [14:25:54] Epoch 30: Loss(train): 0.054959 Loss(val): 0.055094
- [14:40:39] Epoch 32: Loss(train): 0.054236 Loss(val): 0.054509
- [14:52:26] Epoch 34: Loss(train): 0.053323 Loss(val): 0.053676
- [15:04:28] Epoch 36: Loss(train): 0.052686 Loss(val): 0.053072
- [15:18:03] Epoch 38: Loss(train): 0.051935 Loss(val): 0.052419
- [15:29:22] Epoch 40: Loss(train): 0.051245 Loss(val): 0.051794
- [15:30:12] FINAL(40) Loss(val): 0.051794 Accuarcy: 0.634048
- Search 21 of 500
- momentum0.99, features=[96, 192, 192], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
- [15:31:35] INIT Loss(val): 0.245048 Accuarcy: 0.072585
- [15:49:17] Epoch 2: Loss(train): 0.106915 Loss(val): 0.105428
- [16:05:12] Epoch 4: Loss(train): 0.089091 Loss(val): 0.088908
- [16:23:07] Epoch 6: Loss(train): 0.075282 Loss(val): 0.074277
- [16:40:46] Epoch 8: Loss(train): 0.062850 Loss(val): 0.062624
- [16:58:29] Epoch 10: Loss(train): 0.056189 Loss(val): 0.056083
- [17:17:16] Epoch 12: Loss(train): 0.049655 Loss(val): 0.049626
- [17:34:08] Epoch 14: Loss(train): 0.045409 Loss(val): 0.045518
- [17:54:19] Epoch 16: Loss(train): 0.042162 Loss(val): 0.042254
- [18:10:02] Epoch 18: Loss(train): 0.039818 Loss(val): 0.040065
- [18:30:42] Epoch 20: Loss(train): 0.038585 Loss(val): 0.038927
- [18:46:52] Epoch 22: Loss(train): 0.038263 Loss(val): 0.038389
- [19:07:10] Epoch 24: Loss(train): 0.034990 Loss(val): 0.035632
- [19:25:45] Epoch 26: Loss(train): 0.034374 Loss(val): 0.035082
- [19:43:48] Epoch 28: Loss(train): 0.033463 Loss(val): 0.033584
- [20:03:44] Epoch 30: Loss(train): 0.032233 Loss(val): 0.032437
- [20:20:20] Epoch 32: Loss(train): 0.033065 Loss(val): 0.032645
- [20:41:38] Epoch 34: Loss(train): 0.032210 Loss(val): 0.032403
- [20:58:04] Epoch 36: Loss(train): 0.031725 Loss(val): 0.032099
- [21:18:34] Epoch 38: Loss(train): 0.030471 Loss(val): 0.030934
- [21:36:54] Epoch 40: Loss(train): 0.030312 Loss(val): 0.030813
- [21:38:37] FINAL(40) Loss(val): 0.030813 Accuarcy: 0.600442
- Search 22 of 500
- momentum0.98, features=[96, 192, 192], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
- [21:41:08] INIT Loss(val): 0.164662 Accuarcy: 0.097636
- [21:57:03] Epoch 2: Loss(train): 20.748877 Loss(val): 20.759123
- [22:12:28] Epoch 4: Loss(train): 27.568346 Loss(val): 27.566154
- [22:30:34] Epoch 6: Loss(train): 28.220102 Loss(val): 28.217909
- [22:48:10] Epoch 8: Loss(train): 67.155548 Loss(val): 67.165779
- [23:07:08] Epoch 10: Loss(train): 67.068855 Loss(val): 67.079079
- [23:23:42] Epoch 12: Loss(train): 66.994072 Loss(val): 67.004318
- [23:43:22] Epoch 14: Loss(train): 66.931145 Loss(val): 66.941414
- [23:59:21] Epoch 16: Loss(train): 66.875031 Loss(val): 66.885284
- [00:19:03] Epoch 18: Loss(train): 66.825371 Loss(val): 66.835571
- [00:36:41] Epoch 20: Loss(train): 66.781197 Loss(val): 66.791435
- [00:54:54] Epoch 22: Loss(train): 66.741692 Loss(val): 66.751991
- [01:15:18] Epoch 24: Loss(train): 66.706535 Loss(val): 66.716827
- [01:32:32] Epoch 26: Loss(train): 66.675232 Loss(val): 66.685478
- [01:54:11] Epoch 28: Loss(train): 66.647171 Loss(val): 66.657463
- [02:12:09] Epoch 30: Loss(train): 66.621796 Loss(val): 66.632065
- [02:32:33] Epoch 32: Loss(train): 66.598854 Loss(val): 66.609077
- [02:53:21] Epoch 34: Loss(train): 66.578270 Loss(val): 66.588493
- [03:10:47] Epoch 36: Loss(train): 66.560196 Loss(val): 66.570473
- [03:33:05] Epoch 38: Loss(train): 66.544395 Loss(val): 66.554642
- [03:51:21] Epoch 40: Loss(train): 66.530609 Loss(val): 66.540833
- [03:53:19] FINAL(40) Loss(val): 66.540833 Accuarcy: 0.080357
- Search 23 of 500
- momentum0.99, features=[64, 64, 64], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
- [03:56:53] INIT Loss(val): 0.156261 Accuarcy: 0.086173
- [04:05:45] Epoch 2: Loss(train): 0.079105 Loss(val): 0.076430
- [04:12:50] Epoch 4: Loss(train): 0.067922 Loss(val): 0.066296
- [04:19:22] Epoch 6: Loss(train): 0.062268 Loss(val): 0.061061
- [04:29:48] Epoch 8: Loss(train): 0.059802 Loss(val): 0.059280
- [04:39:00] Epoch 10: Loss(train): 0.059741 Loss(val): 0.059402
- [04:46:13] Epoch 12: Loss(train): 0.058659 Loss(val): 0.058159
- [04:52:49] Epoch 14: Loss(train): 0.057998 Loss(val): 0.057408
- [05:03:34] Epoch 16: Loss(train): 0.057697 Loss(val): 0.057173
- [05:12:41] Epoch 18: Loss(train): 0.058854 Loss(val): 0.058166
- [05:19:47] Epoch 20: Loss(train): 0.056203 Loss(val): 0.056039
- [05:26:30] Epoch 22: Loss(train): 0.056706 Loss(val): 0.056652
- [05:37:03] Epoch 24: Loss(train): 0.057241 Loss(val): 0.057240
- [05:45:12] Epoch 26: Loss(train): 0.056111 Loss(val): 0.055896
- [05:52:35] Epoch 28: Loss(train): 0.054545 Loss(val): 0.054455
- [05:59:21] Epoch 30: Loss(train): 0.053666 Loss(val): 0.053996
- [06:06:18] Epoch 32: Loss(train): 0.055091 Loss(val): 0.055624
- [06:13:18] Epoch 34: Loss(train): 0.054184 Loss(val): 0.054805
- [06:20:29] Epoch 36: Loss(train): 0.052324 Loss(val): 0.052880
- [06:30:01] Epoch 38: Loss(train): 0.051825 Loss(val): 0.052219
- [06:38:57] Epoch 40: Loss(train): 0.050568 Loss(val): 0.051316
- [06:39:40] FINAL(40) Loss(val): 0.051316 Accuarcy: 0.649643
- Search 24 of 500
- momentum0.96, features=[32, 64, 128], dropout_rate=0.8
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.03
- [06:41:03] INIT Loss(val): 0.188385 Accuarcy: 0.083690
- [06:52:54] Epoch 2: Loss(train): 0.072349 Loss(val): 0.071118
- [07:08:32] Epoch 4: Loss(train): 0.064639 Loss(val): 0.063467
- [07:21:35] Epoch 6: Loss(train): 0.061816 Loss(val): 0.060563
- [07:37:04] Epoch 8: Loss(train): 0.058359 Loss(val): 0.057653
- [07:50:18] Epoch 10: Loss(train): 0.057401 Loss(val): 0.056310
- [08:04:59] Epoch 12: Loss(train): 0.056189 Loss(val): 0.055490
- [08:19:04] Epoch 14: Loss(train): 0.054788 Loss(val): 0.054267
- [08:33:18] Epoch 16: Loss(train): 0.054138 Loss(val): 0.053642
- [08:48:22] Epoch 18: Loss(train): 0.053486 Loss(val): 0.052964
- [09:01:45] Epoch 20: Loss(train): 0.053176 Loss(val): 0.052770
- [09:19:46] Epoch 22: Loss(train): 0.052395 Loss(val): 0.052135
- [09:32:18] Epoch 24: Loss(train): 0.052084 Loss(val): 0.051754
- [09:50:48] Epoch 26: Loss(train): 0.051454 Loss(val): 0.051278
- [10:03:51] Epoch 28: Loss(train): 0.051378 Loss(val): 0.051049
- [10:22:26] Epoch 30: Loss(train): 0.051123 Loss(val): 0.050865
- [10:35:48] Epoch 32: Loss(train): 0.050678 Loss(val): 0.050489
- [10:54:01] Epoch 34: Loss(train): 0.050485 Loss(val): 0.050431
- [11:07:16] Epoch 36: Loss(train): 0.050130 Loss(val): 0.050041
- [11:25:31] Epoch 38: Loss(train): 0.050138 Loss(val): 0.049954
- [11:39:24] Epoch 40: Loss(train): 0.049971 Loss(val): 0.049950
- [11:40:54] FINAL(40) Loss(val): 0.049950 Accuarcy: 0.656633
- Search 25 of 500
- momentum0.94, features=[96, 192, 192], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
- [11:43:33] INIT Loss(val): 0.206394 Accuarcy: 0.087228
- [11:52:00] Epoch 2: Loss(train): 0.101289 Loss(val): 0.103436
- [11:59:34] Epoch 4: Loss(train): 0.080375 Loss(val): 0.080668
- [12:05:42] Epoch 6: Loss(train): 0.071989 Loss(val): 0.073021
- [12:11:22] Epoch 8: Loss(train): 0.067130 Loss(val): 0.066621
- [12:17:03] Epoch 10: Loss(train): 0.062482 Loss(val): 0.062284
- [12:26:05] Epoch 12: Loss(train): 0.059126 Loss(val): 0.059354
- [12:33:42] Epoch 14: Loss(train): 0.054605 Loss(val): 0.055075
- [12:40:10] Epoch 16: Loss(train): 0.052491 Loss(val): 0.053066
- [12:46:25] Epoch 18: Loss(train): 0.050310 Loss(val): 0.050966
- [12:52:38] Epoch 20: Loss(train): 0.048141 Loss(val): 0.048782
- [12:59:55] Epoch 22: Loss(train): 0.046192 Loss(val): 0.047045
- [13:06:18] Epoch 24: Loss(train): 0.044195 Loss(val): 0.045356
- [13:12:35] Epoch 26: Loss(train): 0.043286 Loss(val): 0.044734
- [13:18:26] Epoch 28: Loss(train): 0.042307 Loss(val): 0.043518
- [13:24:05] Epoch 30: Loss(train): 0.041010 Loss(val): 0.042333
- [13:31:27] Epoch 32: Loss(train): 0.040678 Loss(val): 0.042079
- [13:38:43] Epoch 34: Loss(train): 0.039944 Loss(val): 0.041404
- [13:45:18] Epoch 36: Loss(train): 0.039505 Loss(val): 0.040942
- [13:51:09] Epoch 38: Loss(train): 0.039001 Loss(val): 0.040541
- [13:56:48] Epoch 40: Loss(train): 0.038627 Loss(val): 0.040171
- [13:57:14] FINAL(40) Loss(val): 0.040171 Accuarcy: 0.615595
- Search 26 of 500
- momentum0.99, features=[64, 64, 64], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.03
- [13:58:10] INIT Loss(val): 0.150567 Accuarcy: 0.075561
- [14:05:36] Epoch 2: Loss(train): 0.109244 Loss(val): 0.109046
- [14:13:33] Epoch 4: Loss(train): 0.069782 Loss(val): 0.068761
- [14:21:46] Epoch 6: Loss(train): 0.057850 Loss(val): 0.057034
- [14:32:51] Epoch 8: Loss(train): 0.053643 Loss(val): 0.053023
- [14:41:22] Epoch 10: Loss(train): 0.051602 Loss(val): 0.051370
- [14:49:15] Epoch 12: Loss(train): 0.051565 Loss(val): 0.051038
- [14:56:52] Epoch 14: Loss(train): 0.050527 Loss(val): 0.050176
- [15:08:13] Epoch 16: Loss(train): 0.047978 Loss(val): 0.047917
- [15:16:48] Epoch 18: Loss(train): 0.046836 Loss(val): 0.046800
- [15:24:29] Epoch 20: Loss(train): 0.049216 Loss(val): 0.049681
- [15:34:18] Epoch 22: Loss(train): 0.044710 Loss(val): 0.045216
- [15:43:20] Epoch 24: Loss(train): 0.046563 Loss(val): 0.047376
- [15:51:33] Epoch 26: Loss(train): 0.042391 Loss(val): 0.042913
- [15:59:26] Epoch 28: Loss(train): 0.041383 Loss(val): 0.041802
- [16:09:13] Epoch 30: Loss(train): 0.040634 Loss(val): 0.041065
- [16:18:52] Epoch 32: Loss(train): 0.039923 Loss(val): 0.040496
- [16:27:03] Epoch 34: Loss(train): 0.040688 Loss(val): 0.042053
- [16:34:46] Epoch 36: Loss(train): 0.038398 Loss(val): 0.039507
- [16:45:25] Epoch 38: Loss(train): 0.037850 Loss(val): 0.038930
- [16:53:54] Epoch 40: Loss(train): 0.038935 Loss(val): 0.039747
- [16:54:57] FINAL(40) Loss(val): 0.039747 Accuarcy: 0.614592
- Search 27 of 500
- momentum0.98, features=[96, 192, 192], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.03
- [16:56:34] INIT Loss(val): 0.134213 Accuarcy: 0.091514
- [17:02:28] Epoch 2: Loss(train): 0.090860 Loss(val): 0.090545
- [17:08:42] Epoch 4: Loss(train): 0.078672 Loss(val): 0.076943
- [17:16:48] Epoch 6: Loss(train): 0.069592 Loss(val): 0.068936
- [17:23:32] Epoch 8: Loss(train): 0.066346 Loss(val): 0.065861
- [17:29:47] Epoch 10: Loss(train): 0.064795 Loss(val): 0.064491
- [17:35:36] Epoch 12: Loss(train): 0.063546 Loss(val): 0.063492
- [17:43:11] Epoch 14: Loss(train): 0.062957 Loss(val): 0.062895
- [17:50:18] Epoch 16: Loss(train): 0.062168 Loss(val): 0.062227
- [17:56:49] Epoch 18: Loss(train): 0.061885 Loss(val): 0.061934
- [18:02:49] Epoch 20: Loss(train): 0.061532 Loss(val): 0.061760
- Early stopping with Loss(train) 0.061861 at epoch 20 (Accuracy: 0.608146)
- Search 28 of 500
- momentum0.9, features=[64, 64, 64], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
- [18:04:05] INIT Loss(val): 0.128106 Accuarcy: 0.102738
- [18:12:15] Epoch 2: Loss(train): 0.074689 Loss(val): 0.075390
- [18:24:22] Epoch 4: Loss(train): 0.068198 Loss(val): 0.068720
- [18:33:08] Epoch 6: Loss(train): 0.066180 Loss(val): 0.066643
- [18:40:59] Epoch 8: Loss(train): 0.064997 Loss(val): 0.065444
- [18:53:03] Epoch 10: Loss(train): 0.064207 Loss(val): 0.064619
- [19:02:48] Epoch 12: Loss(train): 0.063483 Loss(val): 0.063943
- [19:10:44] Epoch 14: Loss(train): 0.063037 Loss(val): 0.063462
- [19:21:21] Epoch 16: Loss(train): 0.062571 Loss(val): 0.063062
- [19:32:27] Epoch 18: Loss(train): 0.062316 Loss(val): 0.062758
- [19:41:00] Epoch 20: Loss(train): 0.061978 Loss(val): 0.062450
- [19:49:41] Epoch 22: Loss(train): 0.061717 Loss(val): 0.062215
- [20:02:18] Epoch 24: Loss(train): 0.061504 Loss(val): 0.062028
- [20:11:17] Epoch 26: Loss(train): 0.061352 Loss(val): 0.061835
- [20:19:18] Epoch 28: Loss(train): 0.061151 Loss(val): 0.061692
- [20:31:40] Epoch 30: Loss(train): 0.061015 Loss(val): 0.061562
- [20:41:43] Epoch 32: Loss(train): 0.060934 Loss(val): 0.061451
- [20:49:44] Epoch 34: Loss(train): 0.060828 Loss(val): 0.061372
- [21:01:36] Epoch 36: Loss(train): 0.060729 Loss(val): 0.061282
- [21:11:39] Epoch 38: Loss(train): 0.060642 Loss(val): 0.061227
- [21:20:03] Epoch 40: Loss(train): 0.060570 Loss(val): 0.061159
- [21:20:56] FINAL(40) Loss(val): 0.061159 Accuarcy: 0.525493
- Search 29 of 500
- momentum0.92, features=[32, 32, 32], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
- [21:22:36] INIT Loss(val): 0.137907 Accuarcy: 0.095374
- [21:31:00] Epoch 2: Loss(train): 0.065825 Loss(val): 0.066324
- [21:40:00] Epoch 4: Loss(train): 0.058934 Loss(val): 0.057341
- [21:47:02] Epoch 6: Loss(train): 0.051880 Loss(val): 0.052709
- [21:52:58] Epoch 8: Loss(train): 0.044297 Loss(val): 0.045645
- [21:58:54] Epoch 10: Loss(train): 0.041006 Loss(val): 0.042122
- [22:04:54] Epoch 12: Loss(train): 0.040873 Loss(val): 0.042592
- [22:10:53] Epoch 14: Loss(train): 0.037040 Loss(val): 0.038307
- [22:17:16] Epoch 16: Loss(train): 0.039913 Loss(val): 0.042390
- [22:24:29] Epoch 18: Loss(train): 0.031755 Loss(val): 0.033696
- [22:32:00] Epoch 20: Loss(train): 0.030639 Loss(val): 0.030783
- [22:39:06] Epoch 22: Loss(train): 0.028381 Loss(val): 0.028629
- [22:45:35] Epoch 24: Loss(train): 0.027468 Loss(val): 0.027725
- [22:51:38] Epoch 26: Loss(train): 0.025523 Loss(val): 0.025599
- [23:00:27] Epoch 28: Loss(train): 0.025676 Loss(val): 0.025638
- [23:07:41] Epoch 30: Loss(train): 0.025141 Loss(val): 0.025392
- [23:14:21] Epoch 32: Loss(train): 0.024193 Loss(val): 0.024012
- [23:20:33] Epoch 34: Loss(train): 0.023470 Loss(val): 0.023429
- [23:28:02] Epoch 36: Loss(train): 0.022927 Loss(val): 0.022909
- [23:36:20] Epoch 38: Loss(train): 0.022175 Loss(val): 0.022574
- [23:43:15] Epoch 40: Loss(train): 0.021259 Loss(val): 0.021576
- [23:43:50] FINAL(40) Loss(val): 0.021576 Accuarcy: 0.537568
- Search 30 of 500
- momentum0.96, features=[96, 192, 192], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
- [23:44:59] INIT Loss(val): 0.157926 Accuarcy: 0.096905
- [00:07:35] Epoch 2: Loss(train): 0.083815 Loss(val): 0.085143
- [00:30:44] Epoch 4: Loss(train): 0.066922 Loss(val): 0.068693
- [00:54:18] Epoch 6: Loss(train): 0.062800 Loss(val): 0.064619
- [01:19:21] Epoch 8: Loss(train): 0.055423 Loss(val): 0.056209
- [01:45:26] Epoch 10: Loss(train): 0.051950 Loss(val): 0.052295
- [02:10:56] Epoch 12: Loss(train): 0.048478 Loss(val): 0.050152
- [02:34:46] Epoch 14: Loss(train): 0.049978 Loss(val): 0.049653
- [03:01:13] Epoch 16: Loss(train): 0.043648 Loss(val): 0.045337
- [03:29:02] Epoch 18: Loss(train): 0.045327 Loss(val): 0.048296
- [03:56:01] Epoch 20: Loss(train): 0.045312 Loss(val): 0.048873
- [04:21:49] Epoch 22: Loss(train): 0.040705 Loss(val): 0.040873
- [04:45:42] Epoch 24: Loss(train): 0.046981 Loss(val): 0.049900
- [05:12:34] Epoch 26: Loss(train): 0.038865 Loss(val): 0.040929
- [05:38:34] Epoch 28: Loss(train): 0.030650 Loss(val): 0.030977
- [06:00:05] Epoch 30: Loss(train): 0.030971 Loss(val): 0.032735
- [06:25:37] Epoch 32: Loss(train): 0.032108 Loss(val): 0.030270
- [06:50:02] Epoch 34: Loss(train): 0.029535 Loss(val): 0.028256
- [07:13:34] Epoch 36: Loss(train): 0.025526 Loss(val): 0.024374
- [07:38:32] Epoch 38: Loss(train): 0.025246 Loss(val): 0.023842
- [08:03:25] Epoch 40: Loss(train): 0.024390 Loss(val): 0.023580
- [08:05:38] FINAL(40) Loss(val): 0.023580 Accuarcy: 0.518469
- Search 31 of 500
- momentum0.98, features=[64, 64, 64], dropout_rate=0.6
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
- [08:08:47] INIT Loss(val): 0.136395 Accuarcy: 0.102109
- [08:16:59] Epoch 2: Loss(train): 0.083085 Loss(val): 0.084971
- [08:28:48] Epoch 4: Loss(train): 0.070578 Loss(val): 0.071192
- [08:38:26] Epoch 6: Loss(train): 0.067818 Loss(val): 0.068311
- [08:47:17] Epoch 8: Loss(train): 0.066219 Loss(val): 0.066654
- [08:58:49] Epoch 10: Loss(train): 0.065115 Loss(val): 0.065624
- [09:08:46] Epoch 12: Loss(train): 0.064355 Loss(val): 0.064817
- [09:17:31] Epoch 14: Loss(train): 0.063803 Loss(val): 0.064206
- [09:28:50] Epoch 16: Loss(train): 0.063242 Loss(val): 0.063749
- [09:38:48] Epoch 18: Loss(train): 0.062930 Loss(val): 0.063295
- [09:47:45] Epoch 20: Loss(train): 0.062665 Loss(val): 0.063019
- [09:58:15] Epoch 22: Loss(train): 0.062384 Loss(val): 0.062730
- [10:09:26] Epoch 24: Loss(train): 0.062142 Loss(val): 0.062500
- [10:18:33] Epoch 26: Loss(train): 0.061943 Loss(val): 0.062314
- [10:30:07] Epoch 28: Loss(train): 0.061784 Loss(val): 0.062140
- [10:40:47] Epoch 30: Loss(train): 0.061690 Loss(val): 0.062006
- [10:50:03] Epoch 32: Loss(train): 0.061544 Loss(val): 0.061859
- [11:02:31] Epoch 34: Loss(train): 0.061405 Loss(val): 0.061765
- [11:13:54] Epoch 36: Loss(train): 0.061310 Loss(val): 0.061659
- Early stopping with Loss(train) 0.065227 at epoch 36 (Accuracy: 0.477653)
- Search 32 of 500
- momentum0.92, features=[32, 64, 128], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
- [11:16:41] INIT Loss(val): 0.156245 Accuarcy: 0.081514
- [11:35:09] Epoch 2: Loss(train): 0.075818 Loss(val): 0.075976
- [11:54:19] Epoch 4: Loss(train): 0.069581 Loss(val): 0.069867
- [12:16:03] Epoch 6: Loss(train): 0.067491 Loss(val): 0.067784
- [12:33:26] Epoch 8: Loss(train): 0.066309 Loss(val): 0.066613
- [12:55:22] Epoch 10: Loss(train): 0.065570 Loss(val): 0.065932
- [13:16:01] Epoch 12: Loss(train): 0.064942 Loss(val): 0.065361
- [13:34:16] Epoch 14: Loss(train): 0.064421 Loss(val): 0.064918
- [13:50:08] Epoch 16: Loss(train): 0.064045 Loss(val): 0.064583
- [14:10:29] Epoch 18: Loss(train): 0.063691 Loss(val): 0.064300
- [14:27:48] Epoch 20: Loss(train): 0.063414 Loss(val): 0.064062
- [14:47:52] Epoch 22: Loss(train): 0.063163 Loss(val): 0.063851
- [15:05:02] Epoch 24: Loss(train): 0.062957 Loss(val): 0.063692
- [15:25:31] Epoch 26: Loss(train): 0.062760 Loss(val): 0.063534
- [15:44:27] Epoch 28: Loss(train): 0.062596 Loss(val): 0.063417
- [16:02:11] Epoch 30: Loss(train): 0.062460 Loss(val): 0.063311
- [16:22:44] Epoch 32: Loss(train): 0.062348 Loss(val): 0.063210
- [16:40:25] Epoch 34: Loss(train): 0.062251 Loss(val): 0.063149
- [17:00:11] Epoch 36: Loss(train): 0.062162 Loss(val): 0.063097
- [17:19:44] Epoch 38: Loss(train): 0.062111 Loss(val): 0.063032
- [17:37:13] Epoch 40: Loss(train): 0.062047 Loss(val): 0.062991
- [17:39:26] FINAL(40) Loss(val): 0.062991 Accuarcy: 0.500272
- Search 33 of 500
- momentum0.94, features=[64, 64, 64], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.001
- [17:44:54] INIT Loss(val): 0.129508 Accuarcy: 0.087432
- [18:04:53] Epoch 2: Loss(train): 0.072966 Loss(val): 0.074566
- [18:29:05] Epoch 4: Loss(train): 0.067318 Loss(val): 0.068274
- [18:53:29] Epoch 6: Loss(train): 0.064862 Loss(val): 0.065613
- [19:14:04] Epoch 8: Loss(train): 0.063560 Loss(val): 0.064150
- [19:39:54] Epoch 10: Loss(train): 0.062483 Loss(val): 0.063086
- [20:05:05] Epoch 12: Loss(train): 0.061835 Loss(val): 0.062398
- [20:28:37] Epoch 14: Loss(train): 0.061281 Loss(val): 0.061852
- [20:50:12] Epoch 16: Loss(train): 0.060817 Loss(val): 0.061377
- [21:16:16] Epoch 18: Loss(train): 0.060441 Loss(val): 0.061011
- [21:35:17] Epoch 20: Loss(train): 0.060146 Loss(val): 0.060714
- [21:58:43] Epoch 22: Loss(train): 0.059869 Loss(val): 0.060446
- [22:20:18] Epoch 24: Loss(train): 0.059664 Loss(val): 0.060259
- [22:42:47] Epoch 26: Loss(train): 0.059494 Loss(val): 0.060083
- [23:06:12] Epoch 28: Loss(train): 0.059329 Loss(val): 0.059940
- Early stopping with Loss(train) 0.062314 at epoch 29 (Accuracy: 0.436071)
- Search 34 of 500
- momentum0.94, features=[64, 64, 64], dropout_rate=0.8
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
- [23:23:32] INIT Loss(val): 0.161144 Accuarcy: 0.107738
- [23:47:42] Epoch 2: Loss(train): 0.079291 Loss(val): 0.079141
- [00:12:49] Epoch 4: Loss(train): 0.067550 Loss(val): 0.066014
- [00:39:19] Epoch 6: Loss(train): 0.063289 Loss(val): 0.061791
- [01:05:04] Epoch 8: Loss(train): 0.060796 Loss(val): 0.059554
- [01:31:19] Epoch 10: Loss(train): 0.059412 Loss(val): 0.058274
- [01:59:17] Epoch 12: Loss(train): 0.058747 Loss(val): 0.057489
- [02:28:58] Epoch 14: Loss(train): 0.058412 Loss(val): 0.057003
- [02:58:46] Epoch 16: Loss(train): 0.057484 Loss(val): 0.056236
- [03:28:32] Epoch 18: Loss(train): 0.057060 Loss(val): 0.055838
- [03:57:59] Epoch 20: Loss(train): 0.056660 Loss(val): 0.055544
- [04:26:58] Epoch 22: Loss(train): 0.056213 Loss(val): 0.055160
- [04:56:08] Epoch 24: Loss(train): 0.056014 Loss(val): 0.054934
- [05:21:16] Epoch 26: Loss(train): 0.055638 Loss(val): 0.054669
- [05:48:43] Epoch 28: Loss(train): 0.055279 Loss(val): 0.054408
- [06:13:58] Epoch 30: Loss(train): 0.055161 Loss(val): 0.054242
- [06:41:24] Epoch 32: Loss(train): 0.054907 Loss(val): 0.054066
- [07:08:20] Epoch 34: Loss(train): 0.054621 Loss(val): 0.053844
- [07:35:37] Epoch 36: Loss(train): 0.054479 Loss(val): 0.053736
- [08:03:00] Epoch 38: Loss(train): 0.054394 Loss(val): 0.053631
- [08:29:53] Epoch 40: Loss(train): 0.054193 Loss(val): 0.053513
- [08:32:42] FINAL(40) Loss(val): 0.053513 Accuarcy: 0.610051
- Search 35 of 500
- momentum0.94, features=[64, 64, 64], dropout_rate=0.3
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
- [08:36:22] INIT Loss(val): 0.123761 Accuarcy: 0.091531
- [08:57:47] Epoch 2: Loss(train): 0.065259 Loss(val): 0.065832
- [09:19:41] Epoch 4: Loss(train): 0.059903 Loss(val): 0.058281
- [09:44:11] Epoch 6: Loss(train): 0.056566 Loss(val): 0.054878
- [10:10:43] Epoch 8: Loss(train): 0.053432 Loss(val): 0.052172
- [10:35:42] Epoch 10: Loss(train): 0.051702 Loss(val): 0.050658
- [10:57:51] Epoch 12: Loss(train): 0.050034 Loss(val): 0.049270
- [11:24:31] Epoch 14: Loss(train): 0.048701 Loss(val): 0.048126
- [11:51:11] Epoch 16: Loss(train): 0.047392 Loss(val): 0.047040
- [12:17:09] Epoch 18: Loss(train): 0.046799 Loss(val): 0.046500
- [12:40:51] Epoch 20: Loss(train): 0.045793 Loss(val): 0.045674
- [13:05:28] Epoch 22: Loss(train): 0.045341 Loss(val): 0.045252
- [13:25:44] Epoch 24: Loss(train): 0.044809 Loss(val): 0.044760
- [13:50:57] Epoch 26: Loss(train): 0.044566 Loss(val): 0.044537
- [14:14:24] Epoch 28: Loss(train): 0.043879 Loss(val): 0.043859
- [14:36:11] Epoch 30: Loss(train): 0.043258 Loss(val): 0.043268
- [15:00:39] Epoch 32: Loss(train): 0.042763 Loss(val): 0.042793
- [15:25:03] Epoch 34: Loss(train): 0.042519 Loss(val): 0.042491
- [15:48:44] Epoch 36: Loss(train): 0.042028 Loss(val): 0.041963
- [16:10:14] Epoch 38: Loss(train): 0.041775 Loss(val): 0.041745
- [16:34:21] Epoch 40: Loss(train): 0.041268 Loss(val): 0.041277
- [16:37:30] FINAL(40) Loss(val): 0.041277 Accuarcy: 0.626071
- Search 36 of 500
- momentum0.94, features=[32, 32, 32], dropout_rate=0.4
- kernel=Tuple{Int64,Int64}[(5, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.3
- [16:42:54] INIT Loss(val): 0.113207 Accuarcy: 0.083673
- [17:05:24] Epoch 2: Loss(train): 0.071602 Loss(val): 0.071321
- [17:30:50] Epoch 4: Loss(train): 0.060653 Loss(val): 0.061529
- [17:55:40] Epoch 6: Loss(train): 0.050651 Loss(val): 0.051918
- [18:18:57] Epoch 8: Loss(train): 0.046450 Loss(val): 0.047496
- [18:46:06] Epoch 10: Loss(train): 0.042359 Loss(val): 0.043354
- [19:13:08] Epoch 12: Loss(train): 0.038272 Loss(val): 0.038781
- [19:39:21] Epoch 14: Loss(train): 0.039356 Loss(val): 0.039668
- [20:03:45] Epoch 16: Loss(train): 0.036349 Loss(val): 0.036034
- [20:27:40] Epoch 18: Loss(train): 0.034223 Loss(val): 0.034151
- [20:55:17] Epoch 20: Loss(train): 0.032276 Loss(val): 0.032745
- [21:16:30] Epoch 22: Loss(train): 0.029983 Loss(val): 0.030295
- [21:42:49] Epoch 24: Loss(train): 0.028562 Loss(val): 0.028459
- [22:06:22] Epoch 26: Loss(train): 0.027147 Loss(val): 0.026862
- [22:29:11] Epoch 28: Loss(train): 0.025605 Loss(val): 0.025301
- [22:54:25] Epoch 30: Loss(train): 0.025205 Loss(val): 0.025065
- [23:19:33] Epoch 32: Loss(train): 0.024206 Loss(val): 0.024281
- [23:44:35] Epoch 34: Loss(train): 0.023469 Loss(val): 0.023604
- [00:07:42] Epoch 36: Loss(train): 0.022483 Loss(val): 0.022621
- [00:31:31] Epoch 38: Loss(train): 0.022307 Loss(val): 0.022504
- [00:57:02] Epoch 40: Loss(train): 0.021628 Loss(val): 0.021826
- [01:00:15] FINAL(40) Loss(val): 0.021826 Accuarcy: 0.606854
- Search 37 of 500
- momentum0.92, features=[64, 64, 64], dropout_rate=0.8
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=1.0
- [01:05:55] INIT Loss(val): 0.118011 Accuarcy: 0.093418
- [01:28:59] Epoch 2: Loss(train): 0.071947 Loss(val): 0.071658
- [01:54:44] Epoch 4: Loss(train): 0.057903 Loss(val): 0.058991
- [02:20:57] Epoch 6: Loss(train): 0.048510 Loss(val): 0.047729
- [02:46:19] Epoch 8: Loss(train): 0.042900 Loss(val): 0.043739
- [03:11:28] Epoch 10: Loss(train): 0.036034 Loss(val): 0.035340
- [03:38:58] Epoch 12: Loss(train): 0.035133 Loss(val): 0.036576
- [04:06:04] Epoch 14: Loss(train): 0.031527 Loss(val): 0.032155
- [04:33:18] Epoch 16: Loss(train): 0.032142 Loss(val): 0.033449
- [04:56:07] Epoch 18: Loss(train): 0.029012 Loss(val): 0.028829
- [05:20:51] Epoch 20: Loss(train): 0.027290 Loss(val): 0.027411
- [05:43:24] Epoch 22: Loss(train): 0.026393 Loss(val): 0.025477
- [06:09:01] Epoch 24: Loss(train): 0.025136 Loss(val): 0.024777
- [06:34:51] Epoch 26: Loss(train): 0.023614 Loss(val): 0.022565
- [07:00:12] Epoch 28: Loss(train): 0.023541 Loss(val): 0.023284
- [07:24:35] Epoch 30: Loss(train): 0.023083 Loss(val): 0.022527
- [07:48:19] Epoch 32: Loss(train): 0.022078 Loss(val): 0.021276
- [08:12:51] Epoch 34: Loss(train): 0.021870 Loss(val): 0.021672
- [08:36:53] Epoch 36: Loss(train): 0.021393 Loss(val): 0.021033
- [09:00:56] Epoch 38: Loss(train): 0.021274 Loss(val): 0.020903
- [09:27:55] Epoch 40: Loss(train): 0.022459 Loss(val): 0.021333
- [09:31:11] FINAL(40) Loss(val): 0.021333 Accuarcy: 0.573265
- Search 38 of 500
- momentum0.92, features=[96, 192, 192], dropout_rate=0.8
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.01
- [09:40:13] INIT Loss(val): 0.177381 Accuarcy: 0.082194
- [10:02:06] Epoch 2: Loss(train): 0.100145 Loss(val): 0.101442
- [10:28:32] Epoch 4: Loss(train): 0.090080 Loss(val): 0.090478
- [10:54:33] Epoch 6: Loss(train): 0.086961 Loss(val): 0.087106
- [11:18:52] Epoch 8: Loss(train): 0.085055 Loss(val): 0.085218
- [11:42:03] Epoch 10: Loss(train): 0.084008 Loss(val): 0.084082
- [12:08:51] Epoch 12: Loss(train): 0.083061 Loss(val): 0.083309
- [12:34:18] Epoch 14: Loss(train): 0.082237 Loss(val): 0.082573
- [12:54:57] Epoch 16: Loss(train): 0.082143 Loss(val): 0.082355
- [13:18:12] Epoch 18: Loss(train): 0.081369 Loss(val): 0.081832
- [13:40:38] Epoch 20: Loss(train): 0.081240 Loss(val): 0.081622
- [14:05:08] Epoch 22: Loss(train): 0.080846 Loss(val): 0.081271
- [14:28:44] Epoch 24: Loss(train): 0.080775 Loss(val): 0.081209
- Early stopping with Loss(train) 0.087498 at epoch 24 (Accuracy: 0.458163)
- Search 39 of 500
- momentum0.94, features=[64, 64, 64], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.003
- [14:32:44] INIT Loss(val): 0.131732 Accuarcy: 0.093946
- [14:43:04] Epoch 2: Loss(train): 0.081255 Loss(val): 0.079859
- [14:57:19] Epoch 4: Loss(train): 0.068332 Loss(val): 0.067841
- [15:09:13] Epoch 6: Loss(train): 0.064528 Loss(val): 0.064704
- [15:21:16] Epoch 8: Loss(train): 0.062921 Loss(val): 0.063261
- [15:34:46] Epoch 10: Loss(train): 0.062030 Loss(val): 0.062498
- [15:45:50] Epoch 12: Loss(train): 0.061265 Loss(val): 0.061891
- [16:00:28] Epoch 14: Loss(train): 0.060731 Loss(val): 0.061435
- [16:12:25] Epoch 16: Loss(train): 0.060351 Loss(val): 0.061083
- [16:24:49] Epoch 18: Loss(train): 0.060006 Loss(val): 0.060862
- [16:37:32] Epoch 20: Loss(train): 0.059765 Loss(val): 0.060644
- [16:48:56] Epoch 22: Loss(train): 0.059551 Loss(val): 0.060483
- [17:01:56] Epoch 24: Loss(train): 0.059328 Loss(val): 0.060275
- [17:14:41] Epoch 26: Loss(train): 0.059153 Loss(val): 0.060095
- [17:26:03] Epoch 28: Loss(train): 0.058965 Loss(val): 0.059951
- [17:40:07] Epoch 30: Loss(train): 0.058867 Loss(val): 0.059819
- [17:52:28] Epoch 32: Loss(train): 0.058637 Loss(val): 0.059653
- [18:05:08] Epoch 34: Loss(train): 0.058543 Loss(val): 0.059542
- [18:19:54] Epoch 36: Loss(train): 0.058402 Loss(val): 0.059439
- [18:30:58] Epoch 38: Loss(train): 0.058293 Loss(val): 0.059341
- Early stopping with Loss(train) 0.059225 at epoch 38 (Accuracy: 0.544405)
- Search 40 of 500
- momentum0.92, features=[32, 32, 32], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(5, 1), (5, 1), (2, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.1
- [18:34:47] INIT Loss(val): 0.124025 Accuarcy: 0.088776
- [18:47:33] Epoch 2: Loss(train): 0.057543 Loss(val): 0.058215
- [18:57:06] Epoch 4: Loss(train): 0.051879 Loss(val): 0.052554
- [19:05:25] Epoch 6: Loss(train): 0.048303 Loss(val): 0.048884
- [19:19:12] Epoch 8: Loss(train): 0.047418 Loss(val): 0.046097
- [19:28:58] Epoch 10: Loss(train): 0.046238 Loss(val): 0.044915
- [19:37:28] Epoch 12: Loss(train): 0.044154 Loss(val): 0.043053
- [19:51:17] Epoch 14: Loss(train): 0.042655 Loss(val): 0.041790
- [20:01:13] Epoch 16: Loss(train): 0.041199 Loss(val): 0.040503
- [20:09:50] Epoch 18: Loss(train): 0.040215 Loss(val): 0.039571
- [20:23:19] Epoch 20: Loss(train): 0.039205 Loss(val): 0.038591
- [20:33:47] Epoch 22: Loss(train): 0.038505 Loss(val): 0.037907
- [20:42:15] Epoch 24: Loss(train): 0.037870 Loss(val): 0.037287
- [20:50:49] Epoch 26: Loss(train): 0.037377 Loss(val): 0.036808
- [20:59:19] Epoch 28: Loss(train): 0.036958 Loss(val): 0.036429
- [21:08:32] Epoch 30: Loss(train): 0.036559 Loss(val): 0.036016
- [21:21:13] Epoch 32: Loss(train): 0.036171 Loss(val): 0.035656
- [21:30:26] Epoch 34: Loss(train): 0.035821 Loss(val): 0.035373
- [21:39:16] Epoch 36: Loss(train): 0.035724 Loss(val): 0.035267
- [21:51:46] Epoch 38: Loss(train): 0.035684 Loss(val): 0.035258
- [22:01:20] Epoch 40: Loss(train): 0.035597 Loss(val): 0.035128
- [22:02:18] FINAL(40) Loss(val): 0.035128 Accuarcy: 0.636701
- Search 41 of 500
- momentum0.98, features=[64, 64, 64], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(3, 1), (3, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(3, 1), (3, 1)], learning_rate=0.003
- [22:03:51] INIT Loss(val): 0.116976 Accuarcy: 0.093078
- [22:29:47] Epoch 2: Loss(train): 0.064875 Loss(val): 0.063949
- [22:57:17] Epoch 4: Loss(train): 0.059843 Loss(val): 0.058989
- [23:24:07] Epoch 6: Loss(train): 0.057889 Loss(val): 0.057287
- [23:50:54] Epoch 8: Loss(train): 0.056778 Loss(val): 0.056329
- [00:17:41] Epoch 10: Loss(train): 0.056209 Loss(val): 0.055885
- [00:43:47] Epoch 12: Loss(train): 0.055611 Loss(val): 0.055446
- [01:11:43] Epoch 14: Loss(train): 0.055447 Loss(val): 0.055392
- [01:40:33] Epoch 16: Loss(train): 0.055111 Loss(val): 0.055106
- [02:09:24] Epoch 18: Loss(train): 0.054887 Loss(val): 0.054910
- [02:39:30] Epoch 20: Loss(train): 0.054918 Loss(val): 0.054874
- [03:09:24] Epoch 22: Loss(train): 0.054555 Loss(val): 0.054594
- [03:38:37] Epoch 24: Loss(train): 0.054447 Loss(val): 0.054464
- [04:07:54] Epoch 26: Loss(train): 0.054165 Loss(val): 0.054282
- [04:34:20] Epoch 28: Loss(train): 0.053983 Loss(val): 0.054111
- [05:01:39] Epoch 30: Loss(train): 0.053737 Loss(val): 0.053914
- [05:27:48] Epoch 32: Loss(train): 0.053491 Loss(val): 0.053724
- [05:55:10] Epoch 34: Loss(train): 0.053195 Loss(val): 0.053495
- [06:23:22] Epoch 36: Loss(train): 0.052964 Loss(val): 0.053314
- [06:51:28] Epoch 38: Loss(train): 0.052682 Loss(val): 0.053067
- [07:19:10] Epoch 40: Loss(train): 0.052387 Loss(val): 0.052851
- [07:23:01] FINAL(40) Loss(val): 0.052851 Accuarcy: 0.607602
- Search 42 of 500
- momentum0.96, features=[32, 64, 128], dropout_rate=0.1
- kernel=Tuple{Int64,Int64}[(7, 1), (7, 1), (3, 6)], pooldims=Tuple{Int64,Int64}[(2, 1), (2, 1)], learning_rate=0.001
- [07:29:16] INIT Loss(val): 0.176981 Accuarcy: 0.089626
- [08:08:38] Epoch 2: Loss(train): 0.084734 Loss(val): 0.084191
- [08:51:50] Epoch 4: Loss(train): 0.074645 Loss(val): 0.074708
- [09:34:55] Epoch 6: Loss(train): 0.071603 Loss(val): 0.072190
- [10:19:23] Epoch 8: Loss(train): 0.070126 Loss(val): 0.070948
- [11:06:15] Epoch 10: Loss(train): 0.069323 Loss(val): 0.070290
|